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SAT and NP-complete problems in Artificial
Intelligence

Earlier, NP-complete problems were considered practically
unsolvable, except in simplest instances.
Breakthroughs in SAT solving from mid-1990’s on.
Leading to breakthroughs in state space search (with
applications in construction of intelligent systems.)
Starting to have impact in other areas, including probabilistic
reasoning and machine learning.
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Why you needed to know about NP-hardness
Garey & Johnson, Computers and Intractability, 1979



SAT in AI

Introduction

SAT

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

Why you needed to know about NP-hardness
Garey & Johnson, Computers and Intractability, 1979



SAT in AI

Introduction

SAT

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

Why you needed to know about NP-hardness
Garey & Johnson, Computers and Intractability, 1979



SAT in AI

Introduction

SAT

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

NP-completeness has changed

Earlier: “It is NP-complete, don’t bother trying to solve it.”
Now: “It is NP-complete, you might well solve it.”
SAT now has several industrial applications, and more are
emerging.
Extensions of SAT are a topic of intense research in
automated reasoning and AI.
Many important problems in AI and CS are NP-complete:

Combinatorics of the real world (too many options to do things).
How to do something optimally?
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Applications of SAT in Computer Science

reachability problems
model-checking in Computer Aided Verification [BCCZ99] of
sequential circuits and software
planning in Artificial Intelligence [KS92, KS96]
discrete event systems diagnosis [GARK07]

integrated circuits
automatic test pattern generation (ATPG) [Lar92]
equivalence checking [KPKG02, CGL+10, WGMD09]
logic synthesis [KKY04]
fault diagnosis [SVFAV05]

biology and language
haplotype inference [LMS06]
computing evolutionary tree measures [BSJ09]
construction of phylogenetic trees [BEE+07]
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Classification of Problems by Complexity

problem class search space
SAT find a solution NP trees
SMT find a solution NP
MAX-SAT find best solution FPNP

#SAT how many solutions? #P, PP
SSAT ∃ − ∀ −R alternation PSPACE and-or trees
QBF ∃ − ∀ alternation PSPACE
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Differences in NP-hardness

Most scalable methods are for satisfiable instances of SAT (NP).
These can be solved because of good heuristics: solvers are
successfully guessing their way through an exponentially large
search space.

Currently, the same does not (as often) hold for
unsatisfiable instances: determining that no solutions exist
optimization: finding best solutions
problems involving counting models, e.g. probabilistic
questions
problems involving alternation ∼ and-or trees

Progress in these questions is made, but it has been slower.
NP substantially easier than co-NP, #P, FPNP, ...
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Propositional logic
Syntax

Let X be a set of atomic propositions.
1 ⊥ and > are formulae.
2 x is a formula for all x ∈ X.
3 ¬φ is a formula if φ is.
4 φ ∨ φ′ and φ ∧ φ′ are formulae if φ and φ′ are.

φ→φ′ is an abbreviation for ¬φ ∨ φ′.
φ↔ φ′ is an abbreviation for (φ→φ′) ∧ (φ′→φ).

For literals l ∈ X ∪ {¬x|x ∈ X}, complement l is defined by
x = ¬x and ¬x = x.

A clause is a disjunction of literals l1 ∨ · · · ∨ ln.
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Propositional logic
Valuations and truth

Define truth with respect to a valuation v : X → {0, 1} :
1 v |= >
2 v 6|= ⊥
3 v |= x if and only if v(x) = 1, for all x ∈ X.
4 v |= ¬φ if and only if v 6|= φ.
5 v |= φ ∨ φ′ if and only if v |= φ or v |= φ′.
6 v |= φ ∧ φ′ if and only if v |= φ and v |= φ′.

Define for sets C of formulas, v |= C iff v |= φ for all φ ∈ C.
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The SAT decision problem

SAT
Let X be a set of propositional variables. Let F be a set of
clauses over X.
F ∈ SAT iff there is v : X → {0, 1} such that v |= F .

UNSAT
Let X be a set of propositional variables. Let F be a set of
clauses over X.
F ∈ UNSAT iff v 6|= F for all v : X → {0, 1}.
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Complexity class NP

NP = decision problems solvable by nondeterministic Turing
Machines with a polynomial bound on the number of
computation steps.
This is roughly: search problems with a search tree (OR tree)
of polynomial depth.
SAT is in NP because

1 a valuation v of X can be guessed in |X| steps, and
2 testing v |= F is polynomial time in the size of F .
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NP-hardness of SAT
(Cook, The Complexity of Theorem Proving Procedures, 1971)

Cook showed that the halting problem of any
nondeterministic Turing machine with a polynomial time
bound can be reduced to SAT [Coo71]. Idea:

TM configuration ∼ a valuation of propositional variables
sequence of configurations ∼ sequence of valuations
relations between consecutive configurations ∼ propositional
formula
initial and accepting configurations ∼ propositional formula
accepting computation ∼ valuation that makes the formula true

The proof is similar to the reduction from AI planning to SAT!
We will discuss the topic in detail later.
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Significance of NP-completeness

No NP-complete problem is known to have a polynomial time
algorithm.
Best algorithms have a worst-case exponential runtime.

20.30897m, 20.10299L [Hir00]
(2− 2

k+1 )n [DGH+02]

2
n(1− 1

ln m
n

+O(ln lnm)
)

[DHW05]
(m clauses of length ≤ k, n variables, size L).

However, worst-case doesn’t always show up!
Current SAT algorithms can solve problem instances with
millions of clauses and hundreds of thousands of variables in
seconds.
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Phase transitions
phase transition from SAT to UNSAT in 3-SAT
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Phase transitions
Problem difficulty in the phase transition area
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Phase transitions
Problem difficulty separately for SAT and UNSAT

(diagram from Mitchell, Selman and Levesque, 1992)
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Meaning of phase transitions

Even though all known complete algorithms have an exponential
runtime in the worst case, their scalability on under-constrained
and over-constrained problem instances is often much much
better.

Other hard problems have similar phase transitions: keep
problem size constant, and vary one of the parameters.

scheduling: few..many tasks, a lot of..little time
diagnosis: few..many observations
planning, model-checking: many..few transitions
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Truth-tables

Truth table for
φ = (a↔ b) ∨ (c→d):

v v(φ)
a b c d

0 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 1
0 1 0 1 1
0 1 1 0 0
0 1 1 1 1
1 0 0 0 1
1 0 0 1 1
1 0 1 0 0
1 0 1 1 1
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1
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Truth-tables vs binary search trees

Binary search tree for φ = (a↔ b) ∨ (c→d):

¬a a

¬b b ¬b b

¬c c ¬c c¬c c ¬c c

¬d d ¬d d ¬d d ¬d d¬d d ¬d d ¬d d ¬d d
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The Resolution Rule

Resolution

l ∨ φ l ∨ φ′

φ ∨ φ′

One of l and l is false.
Hence at least one of φ and φ′ is true.
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Unit Resolution

Unrestricted application of the resolution rule is too
expensive.
Unit resolution restricts one of the clauses to be a unit clause
consisting of only one literal.
Performing all possible unit resolution steps on a clause set
can be done in linear time [DG84], and there are very
efficient implementations [MMZ+01].
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Unit Propagation

Unit Resolution

l l ∨ φ
φ

Unit Propagation algorithm UNIT(F) for clause sets F
1 If there is a unit clause l ∈ F , then replace every l ∨ φ ∈ F by
φ and remove all clauses containing l from F .
As a special case the empty clause ⊥ may be obtained.

2 If F still contains a unit clause, repeat step 1.
3 Return F .

We sometimes write F `UP l if l ∈ UP (F).
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Binary search with unit resolution
The Davis-Putnam-Logemann-Loveland procedure DPLL [DLL62]

a ∨ d
b ∨ c

¬a a

¬b b ¬b b

¬c c ¬c c¬c c ¬c c

¬d d¬d d ¬d d¬d d¬d d¬d d ¬d d¬d d
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Davis-Putnam-Logemann-Loveland procedure
[DLL62]

1: PROCEDURE DPLL(C)
2: C := UNIT(C);
3: IF {x,¬x} ⊆ C for some x ∈ X THEN RETURN false;
4: x := any variable such that {x,¬x} ∩ C = ∅;
5: IF no such variable exists THEN RETURN true;
6: IF DPLL(C ∪ {x}) = true THEN RETURN true;
7: RETURN DPLL(C ∪ {¬x});
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DPLL with backjumping

The DPLL backtracking procedure often discovers the same
conflicts repeatedly.
In a branch l1, l2, . . . , ln−1, ln, after ln and ln have led to
conflicts (derivation of ⊥), ln−1 is always tried next, even
when it is irrelevant to the conflicts with ln and ln.
Backjumping [Gas77] can be adapted to DPLL to backtrack
from ln to li when li+1, . . . , ln−1 are all irrelevant.
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DPLL with backjumping

¬a ∨ b
¬b ∨ ¬d ∨ e
¬d ∨ ¬e
¬b ∨ d ∨ e
d ∨ ¬e
c ∨ f

¬aa

¬bb¬bb

¬cc¬cc ¬cc¬cc

¬dd¬dd¬dd¬dd ¬dd¬dd¬dd¬dd
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DPLL with backjumping

¬a ∨ b
¬b ∨ ¬d ∨ e
¬d ∨ ¬e
¬b ∨ d ∨ e
d ∨ ¬e
c ∨ f

Conflict set with d: {a, d}

¬aa

¬bb¬bb

¬cc¬cc ¬cc¬cc

¬dd¬dd¬dd¬dd ¬dd¬dd¬dd¬dd
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DPLL with backjumping

¬a ∨ b
¬b ∨ ¬d ∨ e
¬d ∨ ¬e
¬b ∨ d ∨ e
d ∨ ¬e
c ∨ f

Conflict set with d: {a, d}
Conflict set with ¬d: {a,¬d}

No use trying ¬c.
Directly go to ¬a.

¬aa

¬bb¬bb

¬cc¬cc ¬cc¬cc

¬dd¬dd¬dd¬dd ¬dd¬dd¬dd¬dd
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Conflict-Driven Clause Learning (CDCL)
[MSS96]

The Resolution rule is more powerful than DPLL: UNSAT
proofs by DPLL may be exponentially bigger than the
smallest resolution proofs.
An extension to DPLL, based on learned clauses, is similarly
exponentially more powerful than DPLL [BKS04].
It has been shown that CDCL with restarts is equally
powerful to resolution [PD09a].
In many applications, SAT solvers with CDCL are the best.
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Conflict-Driven Clause Learning (CDCL)

Assume a partial valuation (a path in the DPLL search tree
from the root to a leaf node) corresponding to literals
l1, . . . , ln leads to a contradiction (with unit resolution)

F ∪ {l1, . . . , ln} `UP ⊥

From this follows
F |= l1 ∨ · · · ∨ ln.

Often not all of the literals l1, . . . , ln are needed for deriving
the empty clause ⊥, and a shorter clause can be derived.



SAT in AI

Introduction

SAT
NP-completeness

Phase transitions

Resolution

Unit Propagation

DPLL

Restarts

SAT application:
reachability

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

Conflict-Driven Clause Learning (CDCL)
Example

¬a ∨ b

¬b ∨ ¬d ∨ e

¬d ∨ ¬e falsified

¬d ∨ ¬e ¬b ∨ ¬d ∨ e

¬b ∨ ¬d ¬a ∨ b

¬a ∨ ¬d a

d¬d

⊥
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Conflict-Driven Clause Learning (CDCL)
Example

¬a ∨ b

¬b ∨ ¬d ∨ e

¬d ∨ ¬e falsified

a, b

¬d ∨ ¬e ¬b ∨ ¬d ∨ e

¬b ∨ ¬d ¬a ∨ b

¬a ∨ ¬d a

d¬d

⊥
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Conflict-Driven Clause Learning (CDCL)
Example

¬a ∨ b

¬b ∨ ¬d ∨ e

¬d ∨ ¬e falsified

a, b, c

¬d ∨ ¬e ¬b ∨ ¬d ∨ e

¬b ∨ ¬d ¬a ∨ b

¬a ∨ ¬d a

d¬d

⊥
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Conflict-Driven Clause Learning (CDCL)
Procedure

The Reason of a Literal
For each non-decision literal l a reason is recorded: it is the
clause l ∨ φ from which it was derived with ¬φ.

A Basic Clause Learning Procedure

Start with the clause C = l1 ∨ · · · ∨ ln that was falsified.
Resolve it with the reasons l ∨ φ of non-decision literals l until
only decision variables are left.
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Conflict-Driven Clause Learning (CDCL)
Different variants of the procedure

decision scheme Stop when only decision variables left.
First UIP (Unique Implication Point) Stop when only one

literal of current decision level left.
Last UIP Stop when at the current decision level only the

decision literal is left.

First UIP is usually considered to be the most useful.
Some solvers learn multiple clauses.
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Conflict-Driven Clause Learning (CDCL)
Forgetting/deleting clauses

In contrast to DPLL, a main problem with CDCL is the high
number of learned clauses.
To avoid memory filling up, large numbers of learned clauses
are deleted at regular intervals, typically based on clause
length, last use, and other criteria.
One interesting strategy is to rank the clauses according to
the number of decision levels appearing in the clause [AS09].
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Heuristics for CDCL: VSIDS
Variable State Independent Decaying Sum [MMZ+01]

Initially the score s(l) of literal l is its number of occurrences
in F .
When clause with l is learned, increase r(l).
Periodically decay the scores:

s(l) := r(l) + 0.5s(l); r(l) := 0;

Always choose unassigned literal l with maximum s(l).

Variations and extensions of VSIDS most popular in current
solvers.
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Heavy-tailed runtime distributions

(Diagram from [CGS01]

On many NP-complete problems, heavy-tailed distributions
characterize

runtimes of a randomized algorithm on a single instance and
runtimes of a deterministic algorithm on a class of instances.
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Heavy-tailed runtime distributions
Estimating the mean is problematic

Diagram from [GSCK00]
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Heavy-tailed runtime distributions
Cause

A small number of wrong decisions lead to a part of the
search tree not containing any solutions.
Backtrack-style search needs a long time to traverse the
search tree.

Many short paths from the root node to a success leaf node.
High probability of reaching a huge subtree with no solutions.

These properties mean that
average runtime is high,
restarting the procedure after t seconds reduces the mean
substantially, if t is close to the mean of the original
distribution.
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Restarts in SAT algorithms
Answer to heavy-tailedness

Restarts had been used in stochastic local search algorithms:
Necessary for escaping local minima!

Gomes et al. demonstrated the utility of restarts for systematic
SAT solvers:

Small amount of randomness in branching variable selection.
Restart the algorithm after a given number of seconds.
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Restarts with CDCL

Learned clauses are retained when doing the restart.
Problem: Optimal restart policy depends on the runtime
distribution, which is generally not known.
Problem: Deletion of learned clauses and too early restarts
may lead to non-termination for unsatisfiable formulas. This
is avoided by gradually increasing restart interval.
One effective restart strategy is based on the Luby series
n = 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, ..., learning e.g. 30n
clauses between consecutive restarts [Hua07].
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Application: Reachability

finding a path from a state from in I to a state in set G in a
succinctly/compactly represented graph
PSPACE-complete [GW83, Loz88, LB90, Byl94]
in NP when restricted to paths of polynomial length
Basis of efficient solutions to

planning problem in AI [KS92, KS96]
LTL model-checking problem [BCCZ99]
DES diagnosis problem [GARK07]

Often replacing traditional state-space search methods
One of the first and most prominent applications of SAT
Extensions to timed systems with SAT modulo Theories
(SMT)



SAT in AI

Introduction

SAT
NP-completeness

Phase transitions

Resolution

Unit Propagation

DPLL

Restarts

SAT application:
reachability

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

State-space transition graphs
Blocks world with three blocks
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State-space search and satisfiability
Explicit state-space search; symbolic search with BDDs, SAT
19

68

19
86

19
88

19
90

19
92

19
94

19
96

19
98

20
00

A∗
partial-order reduction

symmetry reduction

BDDs
Symbolic Model-Checking

DNNF

Planning as SAT
SATPLAN

GRASP
SATZ
Bounded Model-Checking
Chaff
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Transition relations in propositional logic

State variables are
X = {a, b, c}.

(¬a ∧ b ∧ c ∧ ¬a′ ∧ b′ ∧ ¬c′)∨
(¬a ∧ b ∧ ¬c ∧ a′ ∧ b′ ∧ ¬c′)∨
(¬a ∧ ¬b ∧ c ∧ a′ ∧ b′ ∧ c′)∨
(a ∧ b ∧ c ∧ a′ ∧ b′ ∧ ¬c′)

The corresponding matrix is
000 001 010 011 100 101 110 111

000 0 0 0 0 0 0 0 0
001 0 0 0 0 0 0 0 1
010 0 0 0 0 0 0 1 0
011 0 0 1 0 0 0 0 0
100 0 0 0 0 0 0 0 0
101 0 0 0 0 0 0 0 0
110 0 0 0 0 0 0 0 0
111 0 0 0 0 0 0 1 0

000

001
010

011

100

101
110

111
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Transition relations in propositional logic

Let X = {x1, . . . , xn} be the state variables.

Any deterministic action/event corresponds to a partial
function.
Partial functions correspond to conjunctions of a precondition
formula Π(x1, . . . , xn) and equivalences

x′i ↔ F (x1, . . . , xn)

for every xi ∈ X.
Choice between actions/events α1, . . . , αk corresponds to

Φ = α1 ∨ · · · ∨ αk.
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Reachability as SAT

Let Φ(n,m) denote the formula obtained from Φ by replacing each
x ∈ X by x@n and each x′ by x@m.
Then satisfying valuations of

Φ(0, 1) ∧ Φ(1, 2) ∧ · · ·Φ(n− 1, n)

are in 1-to-1 correspondence to paths of length n in the transition
graph.

Testing whether a state satisfying G can be reached from a state
satisfying I in n steps reduces to testing the satisfiability of

I(0) ∧ Φ(0, 1) ∧ Φ(1, 2) ∧ · · ·Φ(n− 1, n) ∧G(n).
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Applications

Interpretations of SAT tests

I(0) ∧ Φ(0, 1) ∧ Φ(1, 2) ∧ · · ·Φ(n− 1, n) ∧G(n).

Planning Can goals G be reached from the initial state I [KS96]?
Model-checking Can the safety property ¬G be violated on

executions that start from I? (Extensions for LTL
model-checking in [BCCZ99].)

DES Diagnosis Consider

Φ(0, 1)∧Φ(1, 2)∧· · ·Φ(n−1, n)∧(o1@t1∧· · ·∧om@tm)∧F.

Are observations o1, . . . , om respectively at t1, . . . , tm
compatible with fault assumptions F [GARK07]?
F encodes e.g. “there are n faults between time points
0 and n.
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Applications

The most basic encodings given above can often be improved.

optimal (linear-size) encodings [LBHJ04, RHN06]
multiple actions in parallel [RHN06]
scheduling the SAT tests for different path lengths
[Rin04, Zar04] in parallel
search heuristics replacing VSIDS [Gan11, Rin10, Rin12b]
reachability-specific implementation technology [Rin12a]
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MAXSAT
Motivation

Many AI problems involve optimization:
Learn an explanation with the best match to data [Cus08].
Find a least-cost plan [RGPS10].
Select best drugs for cancer therapy [LK12].

SAT insufficient: answers a binary yes–no question
MAXSAT extends SAT with a basic form of optimization.
Other frameworks: Mixed Integer-Linear Programming
(MILP/ILP/MIP), constraint programming and optimization
[DRGN10], SMT + optimization [ST12]
advantage over MILP: efficient Boolean reasoning
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Introduction: (Weighted) (Partial) MAXSAT

plain MAXSAT Maximize the number of satisfied clauses
partial MAXSAT Maximize the number of satisfied soft clauses

Hard clauses must be satisfied
weighted MAXSATMaximize the sum of weights of satisfied

clauses

Decision problem “is there an valuation with weight ≥ n”
NP-complete.

The FPNP optimization problem solvable by a polynomial number
of SAT calls.
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Algorithms for MAXSAT

reduction to a sequence of SAT problems
[FM06, ABL13, DB11]
branch and bound [HLO08, LMMP10]
Mixed Integer Linear Programming [DB13] (CPLEX)

Some MAXSAT solvers

dfs + bounding MaxSatz, MiniMaxSat
SAT sat4j, wbo, wpm, pwbo, maxhs



SAT in AI

Introduction

SAT

MAXSAT
Algorithms

Applications

Application: MPE

Application:
Structure Learning

#SAT

SSAT

SMT

Conclusion

References

MAXSAT by a sequence of SAT queries

1 From a weighted partial MAXSAT instance, construct a SAT
instance [FM06, ABL13]:

Hard clauses are taken as is.
For each soft clause l1 ∨ · · · ∨ ln, have b ∨ l1 ∨ · · · ∨ ln, where b
is a new auxiliary variable.

2 If the SAT instance is unsatisfiable, the best valuation so far
is the globally best (And if this was the first time here, the
hard clauses are unsatisfiable.)

3 Otherwise, each true b variable corresponds to a (possibly)
false soft clause.

4 Calculate the sum F of the weights of true soft clauses.
5 Construct a new SAT instance, with cardinality constraints

[BB03, Sin05] requiring that weights of true soft clauses > F .
6 One can also add a clause requiring at least one previously

false soft clause to be true. (unsatisfiable cores [ABL13])
7 Continue from step 2.
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Other query strategies

Given SAT instances saying “at most k soft clauses are false”,
alternative query strategies are possible.

unsatisfiability based: try k = 0, then k = 1, and so on.
satisfiability based: try k = kmax − 1, then k = kmax − 2, and
so on.
binary search: try half-way between 0 and kmax, and after
tightening either lower or upper bound, then again half-way.

Same question of SAT queries with different parameter values k
arises also in other SAT and constraints applications, including
planning and scheduling, with other algorithms proposed
[Rin04, SS07]. (Usefulness of these algorithms to MAXSAT is not
clear.)
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Bayesian networks

Compact representation of
probability distributions [Pea89]
Makes probabilistic dependence
and independence explicit.
lots of applications e.g. in
intelligent robotics, especially for
dynamic Bayesian networks
Other graphical models: Markov
networks [Pea89]

season location

temperaturerain soil

plant growth
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Bayesian networks

Probabilistic Inference (PI): calculate marginal probability of a
variable given evidence
Most Probable Explanation (MPE): find a valuation for the
variables with the highest probability
Maximum A Posteriori hypothesis (MAP) [PD04]: find
hypotheses that explain the observations best
Structure Learning (SL): find Bayesian network that best
matches given data

problem complexity SAT variant
PI #P #SAT
MPE FPNP MAXSAT
MAP NPPP E-MAJSAT (SSAT)
SL FPNP MAXSAT
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MPE: Most Probable Explanation

Of all valuations of the variables, find one with the highest
probability.
Has the flavor of diagnosis problems (but see the MAP
problem later!)
Solution e.g. by reduction to MAXSAT [KD99, Par02]

A

A B P (A|B)
0 0 0.6
1 0 0.4
0 1 0.8
1 1 0.2

B

B P (B)
0 0.5
1 0.5

C

C P (C)
0 0.9
1 0.1

D

D B P (D|B)
0 0 1.0
1 0 0.0
0 1 0.2
1 1 0.8
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Reduction of MPE to MAXSAT

A B P (A|B)
0 0 0.6
1 0 0.4
0 1 0.8
1 1 0.2

translates to

¬A ∧ ¬B probability 0.6
¬A ∧B probability 0.4
A ∧ ¬B probability 0.8
A ∧B probability 0.2

Problem 1: Probabilities must be multiplied to get the overall
probability.
Solution: Sum the logarithms of the probabilities.
Problem 2: Probabilities 0 correspond to log 0 =∞.
Solution: Use hard clauses.
Negate the conjunctions to get clauses.
Negate log p (with p ≤ 1) to get positive weights.
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Structure Learning for Bayesian network

ABCD
0000
0101
1000
0101
0000
1101
0010
1000
0101
0100

A

A B P (A|B)
0 0 0.6
1 0 0.4
0 1 0.8
1 1 0.2

B

B P (B)
0 0.5
1 0.5

C

C P (C)
0 0.9
1 0.1

D

D B P (D|B)
0 0 1.0
1 0 0.0
0 1 0.2
1 1 0.8
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Structure Learning for Bayesian networks
Mapping to Constraint Satisfaction, including MAXSAT

The score of a network is the sum of all per-node scores.
The score of each node is determined by its parents: each
alternative parent set has a score.
Constraint satisfaction formulation:

Choose a parent set for each node. (E.g. max. 3 parents)
The resulting graph must be acyclic.
Objective: maximize the sum of the parent set scores.

main challenge in encoding: acyclicity constraint
transitive ancestor relation [Cus08]
total ordering of nodes [Cus08]
recursively define distance from leaf 0, 1, 2, ...
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Structure Learning for Bayesian networks

Finding optimal nets translatable into MAXSAT, MILP etc.
Optimal solutions found for nets of up to some dozens of
nodes.
On many standard benchmarks, MAXSAT and MILP solvers
comparable.
Best methods enhance MILP with specialized heuristics
[Cus11].

Methods used for approximate solutions are different!
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Model-Counting (#SAT)

How many satisfying valuations does a propositional formula
have?
The problem is #P-complete [Val79].
Interestingly, model-counting is #P-complete also when SAT
is easy (in P): DNF-SAT, 2-SAT, Horn-SAT, ... [Val79].
#P harder than NP: φ ∈SAT if and only if model-count ≥ 1
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Weighted Model-Counting

Weighted Model-Counting assigns a weight to each literal.
Compute the sum of the weights of satisfying valuations.
Weight of a valuation is the product of weights of true literals.
This generalization is useful e.g. for probabilistic reasoning.
Coincides with unweighted MC when all weights are 1.
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Algorithms for Model Counting

exact algorithms: extensions of DPLL and CDCL
[BDP03, BDP09, SBB+04, SBK05a, GSS09]
approximate counting (upper bound)
approximate counting (no guaranteed lower or upper bound)
[KSS11]
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Algorithms
extensions of DPLL and CDCL

basic algorithm: DPLL-style tree search
connected components [BP00]
component caching [BDP03]
combining clause-learning with component caching
[SBB+04]
heuristics [SBK05a]
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Basic model-counting DPLL algorithm

Consider a model-counting run of DPLL for a formula with
propositional variables X.

Two branches {x} ∪ C and {¬x} ∪ C disjoint =⇒ take the
sum the respective model counts.
When DPLL detects that all clauses are satisfied with n
variables assigned, the count for the branch is

2|X|−n
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Component analysis and component caching

Enhancements to the basic model-counting DPLL (e.g. in Cachet
[SBB+04]):

Component analysis: if C can be partitioned to (C1, . . . , Cn)
so that partitions don’t share variables, then count each Ci

separately and take the product of the counts [BP00]
Component caching [BDP03]: record model-counts and
recall them when encountering a clause set again.
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Efficient model-counts for normal forms

Model-counting for CNF (#SAT) is #P-complete [Val79].
Some normal forms have polynomial time model-counting.

Binary Decision Diagrams (BDD) [Bry92]
deterministic Decomposable Negation Normal Form (d-DNNF)
[Dar02]

Reaching these normal forms can take exponential time,
space.
Some of the best translators for these normal forms [HD07]
are similar to the model-counting variants of the
Davis-Putnam procedure, for example in utilizing component
analysis.
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MC Applications: Bayesian inference

optimal distinguishing tests [HS09]
Bayesian inference [BDP09, SBK05b, CD08], calculating
marginal probabilities of some variables given values of other
variables of a Bayesian network.
(There are interesting connections between specialized
Bayesian inference algorithms and model-counting
algorithms. E.g., many can be viewed as instances of
algorithms for the SumProd problem [BDP09].)
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Probabilistic Inference by Model-Counting
Marginal probability of given evidence

A

A B P (A|B)
0 0 0.6
1 0 0.4
0 1 0.8
1 1 0.2

B

B P (B)
0 0.5
1 0.5

C

C P (C)
0 0.9
1 0.1

D

D B P (D|B)
0 0 1.0
1 0 0.0
0 1 0.2
1 1 0.8

Variable for each node A,B,C,D.
Parentless nodes have the obvious
weights w(B) = w(¬B) = 0.5,
w(C) = 0.1, w(¬C) = 0.9.
Chance variables cA|B and cA|¬B for
nodes with parents.
w(cA|B) = 0.2 w(¬cA|B) = 0.8
w(cA|¬B) = 0.4 w(¬cA|¬B) = 0.6

w(A) = 1 w(A) = 1

B ∧ cA|B→A
B ∧ ¬cA|B→¬A
¬B ∧ cA|¬B→A
¬B ∧ ¬cA|¬B→¬A
Conditioning with evidence B,¬C by
adding in the clause set.
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Stochastic Satisfiability SSAT

Stochastic satisfiability [Pap85] extends propositional logic
with stochastic AND-OR quantification. (An extension of
Quantified Boolean formulas (QBF) [Sto76]).
Prefix consisting of variables quantified by ∃, ∀ and

Rr,
followed by a propositional formula.

In SSAT, the probability P (φ) associated with a formula φ is
defined recursively as follows.

Base case: variable free (quantifier free) formulas containing
only atomic formulas ⊥ and > and Boolean connectives.
P (>) = 1.0
P (⊥) = 0.0

P (∃xφ) = max(P (φ[>/x]), P (φ[⊥/x]))

P (

Rrxφ) = r × P (φ[>/x]) + (1− r)× P (φ[⊥/x])

P (∀xφ) = min(P (φ[>/x]), P (φ[⊥/x]))

Question: Is P (φ) ≥ R for some R ∈ [0, 1[?
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Stochastic Satisfiability SSAT
Special cases

SSAT can be viewed as a generalization of

SAT: quanfiers ∃ only
TAUT: quanfiers ∀ only
quantified Boolean formulas (QBF): quantifiers ∃, ∀ only
[Sto76]
E-MAJSAT: prefix ∃∃ · · · ∃

Rr1 Rr2 · · ·

Rrn [PD09b]
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Algorithms for E-MAJSAT and SSAT

Basic approach [Lit99, LMP01]:
DPLL-style tree search
variables selected in quantification order
prune subtrees if irrelevant for establishing the lb R
(thresholding [ML03])
component caching (as in model-counting #SAT)

Implementations reported by Majercik, Littman, Boots
[ML03, MB05].
resolution rule [TF10] (following QBF resolution [KBKF95])
SMT-style extension to cover the orthogonal problem of
combining SAT with linear arithmetics (SSMT [TEF11])
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Applications

Maximum A Posteriori Hypothesis (MAP) is NPPP-complete
[PD04], corresponding to E-MAJSAT (∃ · · ·

Rr · · · )
MAP application: diagnosis
Probabilistic verification of safety critical systems: what is the
probability that event x will take place? [TF11]
probabilistic planning [ML03]
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MAP: Maximum A Posteriori Hypothesis

MPE finds a single most probable valuation of variables.
The probability of this valuation is typically low, and it is often
not representative of the most likely fault e.g. in diagnosis.
The Maximum A Posteriori Hypothesis (MAP) problem
[PD04]:
Find a valuation to a subset of hypothesis variables H that
maximizes the probability of the given observations.
Decision version of MAP is NPPP-complete: guess a
valuation of H; then verify that the probability of the
observations is ≥ r for a given bound r.
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MAP: Maximum A Posteriori Hypothesis
Encoding as E-MAJSAT

How to choose hypotheses h1, . . . , hn to maximize the
probability expressed by
∃x1∃x2 · · · ∃xn

R0.5y1 · · ·

R0.5ymφ
Encoding like Probabilistic Inference with Model-Checking.
Difference is quantification:

∃h1∃h2 · · · ∃hn

Rw1x1 · · ·

RwmxmΦ

where x1, ..., xm are all the non-hypothesis variables with the
same weights w1, . . . , wm as in the Probabilistic Inference
problem.
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Probabilistic planning by SSAT
[ML98]

∃P

RqC∃E

(
I0→

(
t−1∧
i=0

T (i, i+ 1) ∧Gt

))
(1)

1 1st block: ∃-quantification over all action sequences
2 2nd block:

R

-quantification over all contingencies
3 3rd block: ∃-quantification over all executions of the plan
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SMT: Satisfiability Modulo Theories

numbers needed in representing
time
space (distance, size, ...)
resources (money, materials, ...)

SAT has no numbers: reduction to SAT is feasible only for
small integers
SAT modulo Theories = SAT + specialized solvers for specific
theories, such as

linear integer/rational/real arithmetic
bitvectors
graphs

Similar to constraint programming frameworks.
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Basic ideas of SMT

Not everything is compactly expressible and efficiently
solvable if only Boolean variables are used, for example real
and rational arithmetics.
SAT can be extended with non-Boolean theories. A clause
has the form

l1 ∨ · · · ∨ ln ∨ E

where E is a set of quantifier-free inequations over some set
V of real/rational/other variables.
The theories can be e.g.

linear inequalities,
mixed integer integer linear programs, or
something completely different.

Compare: mixed integer linear programming MILP
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SMT: Algorithms
Implementation

Extension of DPLL to theories
1 Run DPLL ignoring the inequations in the clauses.
2 After all Boolean variables have been set (at a leaf of the

DPLL search tree), take the inequations E1, . . . , Em from all
clauses that have no true literal.

3 Test with a specialized solver if E1 ∪ · · · ∪ Em is solvable. If it
is, terminate.

4 Otherwise backtrack with the DPLL algorithm.

The general idea is easy to implement for different theories,
e.g. linear arithmetic.
Early pruning of the DPLL search tree can be achieved by
running the arithmetic solver before all Boolean variables are
set.
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SMT applications

reachability with numeric state variables: planning with
resources [WW99]
reachability for timed transition systems: model-checking of
timed systems [ACKS02], planning [SD05])



SAT in AI

Introduction

SAT

MAXSAT

#SAT

SSAT

SMT
Algorithms

Application: Timed
Systems

Conclusion

References

Timed systems reachability

The most basic reachability problem (e.g. classical planning)
is about instantaneous/asynchronous changes of (discrete)
state variables.
In timed systems, change may have a duration or a delay.
Multiple simultaneous overlapping changes
Change of continuous state variables may be continuous.
Lots of applications: model-checking/verification of timed
systems, temporal planning, temporal diagnosis, ...
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SMT formalization of Timed Systems

Represent system state at
time points where something
non-continuous happens.

Action is taken.
Delayed effect of action
takes place.
A continuously
changing variable
reaches a critical value.
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SMT formalization of Timed Systems
Actions and counters

Variable ∆@t indicates duration between time points t− 1 and t.

Following is for actions a, state variables x, and counters C.
precondition of action a@t→φ@t
counter initialization a@t→(C@t = c)
counter update ¬a@t→(C@t = C@(t− 1)−∆t)
discrete change (C@t = 0)→x@t
discrete change (C@t = 0)→¬x@t
frame axiom (x@(t− 1) ∧ ¬x@t)→(C1@t > 0 ∨ · · ·

Additionally, we need formulas to prevent overlap of actions using
same resources.
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SMT formalization of Timed Systems
Progress of time

Progress of time ∆@t between points t− 1 and t.
progress always positive ∆@t > 0
don’t pass a scheduled change ∆@t ≤ Ck@(t− 1)
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SMT applications

Timed and hybrid systems analysis and verification [ABCS05]
Planning in timed and hybrid systems [SD05]
Timed and hybrid systems diagnosis:

Representation of observations: absolute time points
Representation of observations: temporal uncertainty
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Other approaches to Timed Systems
Reachability

Explicit state-space search in the space of timed states (e.g.
the UPPAAL model-checker [BLL+96])
Generate untimed transition sequences with SAT, then test
whether possible to schedule [RGS13].
Each method has strengths in different types of problems.
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Conclusion
Algorithms

NP-complete problems have become more solvable since
mid-1990ies
strength of algorithms such as CDCL over a wide range of
SAT problems and applications
convergence of search methods in different areas:

Probabilistic Inference for Bayesian networks vs.
Model-Counting (#SAT)
reachability in AI planning and Computer Aided Verification

increasing connections to combinatorial optimization
methods, e.g. Mixed Integer Linear Programming
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Conclusion
Problems

mappings complexity class - SAT variant - AI problem for
reachability, planning, games:
NP SAT succinct reachability (poly-length paths)
NP SMT timed systems reachability (poly-length paths)
NPPP SSAT succinct stochastic reachability (poly-length paths)
PSPACE QBF (succinct) 2-player games winning strategies
PSPACE SSAT stochastic 2-player games optimal strategies

probabilistic reasoning:
FPNP MAXSAT Bayesian network MPE, SL
#P #SAT Bayesian network PI
NPPP E-MAJSAT Bayesian network MAP
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