
SAT in AI

Introduction

SAT

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

SAT in AI: high performance search
methods with applications

Jussi Rintanen
Department of Information and Computer Science

Aalto University
Helsinki, Finland

IJCAI 2013, Beijing



SAT in AI

Introduction

SAT

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

SAT and NP-complete problems in Artificial
Intelligence

Earlier, NP-complete problems were considered practically
unsolvable, except in simplest instances.
Breakthroughs in SAT solving from mid-1990’s on.
Leading to breakthroughs in state space search (with
applications in construction of intelligent systems.)
Starting to have impact in other areas, including probabilistic
reasoning and machine learning.



SAT in AI

Introduction

SAT

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

Why you needed to know about NP-hardness
Garey & Johnson, Computers and Intractability, 1979



SAT in AI

Introduction

SAT

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

Why you needed to know about NP-hardness
Garey & Johnson, Computers and Intractability, 1979



SAT in AI

Introduction

SAT

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

Why you needed to know about NP-hardness
Garey & Johnson, Computers and Intractability, 1979



SAT in AI

Introduction

SAT

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

NP-completeness has changed

Earlier: “It is NP-complete, don’t bother trying to solve it.”
Now: “It is NP-complete, you might well solve it.”
SAT now has several industrial applications, and more are
emerging.
Extensions of SAT are a topic of intense research in
automated reasoning and AI.
Many important problems in AI and CS are NP-complete:

Combinatorics of the real world (too many options to do things).
How to do something optimally?



SAT in AI

Introduction

SAT

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

Applications of SAT in Computer Science

reachability problems
model-checking in Computer Aided Verification [BCCZ99] of
sequential circuits and software
planning in Artificial Intelligence [KS92, KS96]
discrete event systems diagnosis [GARK07]

integrated circuits
automatic test pattern generation (ATPG) [Lar92]
equivalence checking [KPKG02, CGL+10, WGMD09]
logic synthesis [KKY04]
fault diagnosis [SVFAV05]

biology and language
haplotype inference [LMS06]
computing evolutionary tree measures [BSJ09]
construction of phylogenetic trees [BEE+07]



SAT in AI

Introduction

SAT

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

Classification of Problems by Complexity

problem class search space
SAT find a solution NP trees
SMT find a solution NP
MAX-SAT find best solution FPNP

#SAT how many solutions? #P, PP
SSAT ∃ − ∀ −R alternation PSPACE and-or trees
QBF ∃ − ∀ alternation PSPACE



SAT in AI

Introduction

SAT

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

Differences in NP-hardness

Most scalable methods are for satisfiable instances of SAT (NP).
These can be solved because of good heuristics: solvers are
successfully guessing their way through an exponentially large
search space.

Currently, the same does not (as often) hold for
unsatisfiable instances: determining that no solutions exist
optimization: finding best solutions
problems involving counting models, e.g. probabilistic
questions
problems involving alternation ∼ and-or trees

Progress in these questions is made, but it has been slower.
NP substantially easier than co-NP, #P, FPNP, ...



SAT in AI

Introduction

SAT

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

Propositional logic
Syntax

Let X be a set of atomic propositions.
1 ⊥ and > are formulae.
2 x is a formula for all x ∈ X.
3 ¬φ is a formula if φ is.
4 φ ∨ φ′ and φ ∧ φ′ are formulae if φ and φ′ are.

φ→φ′ is an abbreviation for ¬φ ∨ φ′.
φ↔ φ′ is an abbreviation for (φ→φ′) ∧ (φ′→φ).

For literals l ∈ X ∪ {¬x|x ∈ X}, complement l is defined by
x = ¬x and ¬x = x.

A clause is a disjunction of literals l1 ∨ · · · ∨ ln.



SAT in AI

Introduction

SAT

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

Propositional logic
Valuations and truth

Define truth with respect to a valuation v : X → {0, 1} :
1 v |= >
2 v 6|= ⊥
3 v |= x if and only if v(x) = 1, for all x ∈ X.
4 v |= ¬φ if and only if v 6|= φ.
5 v |= φ ∨ φ′ if and only if v |= φ or v |= φ′.
6 v |= φ ∧ φ′ if and only if v |= φ and v |= φ′.

Define for sets C of formulas, v |= C iff v |= φ for all φ ∈ C.



SAT in AI

Introduction

SAT
NP-completeness

Phase transitions

Resolution

Unit Propagation

DPLL

Restarts

SAT application:
reachability

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

The SAT decision problem

SAT
Let X be a set of propositional variables. Let F be a set of
clauses over X.
F ∈ SAT iff there is v : X → {0, 1} such that v |= F .

UNSAT
Let X be a set of propositional variables. Let F be a set of
clauses over X.
F ∈ UNSAT iff v 6|= F for all v : X → {0, 1}.



SAT in AI

Introduction

SAT
NP-completeness

Phase transitions

Resolution

Unit Propagation

DPLL

Restarts

SAT application:
reachability

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

Complexity class NP

NP = decision problems solvable by nondeterministic Turing
Machines with a polynomial bound on the number of
computation steps.
This is roughly: search problems with a search tree (OR tree)
of polynomial depth.
SAT is in NP because

1 a valuation v of X can be guessed in |X| steps, and
2 testing v |= F is polynomial time in the size of F .



SAT in AI

Introduction

SAT
NP-completeness

Phase transitions

Resolution

Unit Propagation

DPLL

Restarts

SAT application:
reachability

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

NP-hardness of SAT
(Cook, The Complexity of Theorem Proving Procedures, 1971)

Cook showed that the halting problem of any
nondeterministic Turing machine with a polynomial time
bound can be reduced to SAT [Coo71]. Idea:

TM configuration ∼ a valuation of propositional variables
sequence of configurations ∼ sequence of valuations
relations between consecutive configurations ∼ propositional
formula
initial and accepting configurations ∼ propositional formula
accepting computation ∼ valuation that makes the formula true

The proof is similar to the reduction from AI planning to SAT!
We will discuss the topic in detail later.



SAT in AI

Introduction

SAT
NP-completeness

Phase transitions

Resolution

Unit Propagation

DPLL

Restarts

SAT application:
reachability

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

Significance of NP-completeness

No NP-complete problem is known to have a polynomial time
algorithm.
Best algorithms have a worst-case exponential runtime.

20.30897m, 20.10299L [Hir00]
(2− 2

k+1 )n [DGH+02]

2
n(1− 1

ln m
n

+O(ln lnm)
)

[DHW05]
(m clauses of length ≤ k, n variables, size L).

However, worst-case doesn’t always show up!
Current SAT algorithms can solve problem instances with
millions of clauses and hundreds of thousands of variables in
seconds.



SAT in AI

Introduction

SAT
NP-completeness

Phase transitions

Resolution

Unit Propagation

DPLL

Restarts

SAT application:
reachability

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

Phase transitions
phase transition from SAT to UNSAT in 3-SAT



SAT in AI

Introduction

SAT
NP-completeness

Phase transitions

Resolution

Unit Propagation

DPLL

Restarts

SAT application:
reachability

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

Phase transitions
Problem difficulty in the phase transition area



SAT in AI

Introduction

SAT
NP-completeness

Phase transitions

Resolution

Unit Propagation

DPLL

Restarts

SAT application:
reachability

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

Phase transitions
Problem difficulty separately for SAT and UNSAT

(diagram from Mitchell, Selman and Levesque, 1992)



SAT in AI

Introduction

SAT
NP-completeness

Phase transitions

Resolution

Unit Propagation

DPLL

Restarts

SAT application:
reachability

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

Meaning of phase transitions

Even though all known complete algorithms have an exponential
runtime in the worst case, their scalability on under-constrained
and over-constrained problem instances is often much much
better.

Other hard problems have similar phase transitions: keep
problem size constant, and vary one of the parameters.

scheduling: few..many tasks, a lot of..little time
diagnosis: few..many observations
planning, model-checking: many..few transitions



SAT in AI

Introduction

SAT
NP-completeness

Phase transitions

Resolution

Unit Propagation

DPLL

Restarts

SAT application:
reachability

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

Truth-tables

Truth table for
φ = (a↔ b) ∨ (c→d):

v v(φ)
a b c d

0 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 1
0 1 0 1 1
0 1 1 0 0
0 1 1 1 1
1 0 0 0 1
1 0 0 1 1
1 0 1 0 0
1 0 1 1 1
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1



SAT in AI

Introduction

SAT
NP-completeness

Phase transitions

Resolution

Unit Propagation

DPLL

Restarts

SAT application:
reachability

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

Truth-tables vs binary search trees

Binary search tree for φ = (a↔ b) ∨ (c→d):

¬a a

¬b b ¬b b

¬c c ¬c c¬c c ¬c c

¬d d ¬d d ¬d d ¬d d¬d d ¬d d ¬d d ¬d d



SAT in AI

Introduction

SAT
NP-completeness

Phase transitions

Resolution

Unit Propagation

DPLL

Restarts

SAT application:
reachability

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

The Resolution Rule

Resolution

l ∨ φ l ∨ φ′

φ ∨ φ′

One of l and l is false.
Hence at least one of φ and φ′ is true.



SAT in AI

Introduction

SAT
NP-completeness

Phase transitions

Resolution

Unit Propagation

DPLL

Restarts

SAT application:
reachability

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

Unit Resolution

Unrestricted application of the resolution rule is too
expensive.
Unit resolution restricts one of the clauses to be a unit clause
consisting of only one literal.
Performing all possible unit resolution steps on a clause set
can be done in linear time [DG84], and there are very
efficient implementations [MMZ+01].



SAT in AI

Introduction

SAT
NP-completeness

Phase transitions

Resolution

Unit Propagation

DPLL

Restarts

SAT application:
reachability

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

Unit Propagation

Unit Resolution

l l ∨ φ
φ

Unit Propagation algorithm UNIT(F) for clause sets F
1 If there is a unit clause l ∈ F , then replace every l ∨ φ ∈ F by
φ and remove all clauses containing l from F .
As a special case the empty clause ⊥ may be obtained.

2 If F still contains a unit clause, repeat step 1.
3 Return F .

We sometimes write F `UP l if l ∈ UP (F).



SAT in AI

Introduction

SAT
NP-completeness

Phase transitions

Resolution

Unit Propagation

DPLL

Restarts

SAT application:
reachability

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

Binary search with unit resolution
The Davis-Putnam-Logemann-Loveland procedure DPLL [DLL62]

a ∨ d
b ∨ c

¬a a

¬b b ¬b b

¬c c ¬c c¬c c ¬c c

¬d d¬d d ¬d d¬d d¬d d¬d d ¬d d¬d d



SAT in AI

Introduction

SAT
NP-completeness

Phase transitions

Resolution

Unit Propagation

DPLL

Restarts

SAT application:
reachability

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

Binary search with unit resolution
The Davis-Putnam-Logemann-Loveland procedure DPLL [DLL62]

a ∨ d
b ∨ c

¬a a

¬b b ¬b b

¬c c ¬c c¬c c ¬c c

¬d d¬d d ¬d d¬d d¬d d¬d d ¬d d¬d d



SAT in AI

Introduction

SAT
NP-completeness

Phase transitions

Resolution

Unit Propagation

DPLL

Restarts

SAT application:
reachability

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

Binary search with unit resolution
The Davis-Putnam-Logemann-Loveland procedure DPLL [DLL62]

a ∨ d
b ∨ c

¬a a

¬b b ¬b b

¬c c ¬c c¬c c ¬c c

¬d d¬d d ¬d d¬d d¬d d¬d d ¬d d¬d d



SAT in AI

Introduction

SAT
NP-completeness

Phase transitions

Resolution

Unit Propagation

DPLL

Restarts

SAT application:
reachability

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

Davis-Putnam-Logemann-Loveland procedure
[DLL62]

1: PROCEDURE DPLL(C)
2: C := UNIT(C);
3: IF {x,¬x} ⊆ C for some x ∈ X THEN RETURN false;
4: x := any variable such that {x,¬x} ∩ C = ∅;
5: IF no such variable exists THEN RETURN true;
6: IF DPLL(C ∪ {x}) = true THEN RETURN true;
7: RETURN DPLL(C ∪ {¬x});



SAT in AI

Introduction

SAT
NP-completeness

Phase transitions

Resolution

Unit Propagation

DPLL

Restarts

SAT application:
reachability

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

DPLL with backjumping

The DPLL backtracking procedure often discovers the same
conflicts repeatedly.
In a branch l1, l2, . . . , ln−1, ln, after ln and ln have led to
conflicts (derivation of ⊥), ln−1 is always tried next, even
when it is irrelevant to the conflicts with ln and ln.
Backjumping [Gas77] can be adapted to DPLL to backtrack
from ln to li when li+1, . . . , ln−1 are all irrelevant.



SAT in AI

Introduction

SAT
NP-completeness

Phase transitions

Resolution

Unit Propagation

DPLL

Restarts

SAT application:
reachability

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

DPLL with backjumping

¬a ∨ b
¬b ∨ ¬d ∨ e
¬d ∨ ¬e
¬b ∨ d ∨ e
d ∨ ¬e
c ∨ f

¬aa

¬bb¬bb

¬cc¬cc ¬cc¬cc

¬dd¬dd¬dd¬dd ¬dd¬dd¬dd¬dd



SAT in AI

Introduction

SAT
NP-completeness

Phase transitions

Resolution

Unit Propagation

DPLL

Restarts

SAT application:
reachability

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

DPLL with backjumping

¬a ∨ b
¬b ∨ ¬d ∨ e
¬d ∨ ¬e
¬b ∨ d ∨ e
d ∨ ¬e
c ∨ f

¬aa

¬bb¬bb

¬cc¬cc ¬cc¬cc

¬dd¬dd¬dd¬dd ¬dd¬dd¬dd¬dd



SAT in AI

Introduction

SAT
NP-completeness

Phase transitions

Resolution

Unit Propagation

DPLL

Restarts

SAT application:
reachability

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

DPLL with backjumping

¬a ∨ b
¬b ∨ ¬d ∨ e
¬d ∨ ¬e
¬b ∨ d ∨ e
d ∨ ¬e
c ∨ f

¬aa

¬bb¬bb

¬cc¬cc ¬cc¬cc

¬dd¬dd¬dd¬dd ¬dd¬dd¬dd¬dd



SAT in AI

Introduction

SAT
NP-completeness

Phase transitions

Resolution

Unit Propagation

DPLL

Restarts

SAT application:
reachability

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

DPLL with backjumping

¬a ∨ b
¬b ∨ ¬d ∨ e
¬d ∨ ¬e
¬b ∨ d ∨ e
d ∨ ¬e
c ∨ f

Conflict set with d: {a, d}

¬aa

¬bb¬bb

¬cc¬cc ¬cc¬cc

¬dd¬dd¬dd¬dd ¬dd¬dd¬dd¬dd



SAT in AI

Introduction

SAT
NP-completeness

Phase transitions

Resolution

Unit Propagation

DPLL

Restarts

SAT application:
reachability

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

DPLL with backjumping

¬a ∨ b
¬b ∨ ¬d ∨ e
¬d ∨ ¬e
¬b ∨ d ∨ e
d ∨ ¬e
c ∨ f

Conflict set with d: {a, d}
Conflict set with ¬d: {a,¬d}

¬aa

¬bb¬bb

¬cc¬cc ¬cc¬cc

¬dd¬dd¬dd¬dd ¬dd¬dd¬dd¬dd



SAT in AI

Introduction

SAT
NP-completeness

Phase transitions

Resolution

Unit Propagation

DPLL

Restarts

SAT application:
reachability

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

DPLL with backjumping

¬a ∨ b
¬b ∨ ¬d ∨ e
¬d ∨ ¬e
¬b ∨ d ∨ e
d ∨ ¬e
c ∨ f

Conflict set with d: {a, d}
Conflict set with ¬d: {a,¬d}

No use trying ¬c.
Directly go to ¬a.

¬aa

¬bb¬bb

¬cc¬cc ¬cc¬cc

¬dd¬dd¬dd¬dd ¬dd¬dd¬dd¬dd



SAT in AI

Introduction

SAT
NP-completeness

Phase transitions

Resolution

Unit Propagation

DPLL

Restarts

SAT application:
reachability

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

Conflict-Driven Clause Learning (CDCL)
[MSS96]

The Resolution rule is more powerful than DPLL: UNSAT
proofs by DPLL may be exponentially bigger than the
smallest resolution proofs.
An extension to DPLL, based on learned clauses, is similarly
exponentially more powerful than DPLL [BKS04].
It has been shown that CDCL with restarts is equally
powerful to resolution [PD09a].
In many applications, SAT solvers with CDCL are the best.



SAT in AI

Introduction

SAT
NP-completeness

Phase transitions

Resolution

Unit Propagation

DPLL

Restarts

SAT application:
reachability

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

Conflict-Driven Clause Learning (CDCL)

Assume a partial valuation (a path in the DPLL search tree
from the root to a leaf node) corresponding to literals
l1, . . . , ln leads to a contradiction (with unit resolution)

F ∪ {l1, . . . , ln} `UP ⊥

From this follows
F |= l1 ∨ · · · ∨ ln.

Often not all of the literals l1, . . . , ln are needed for deriving
the empty clause ⊥, and a shorter clause can be derived.



SAT in AI

Introduction

SAT
NP-completeness

Phase transitions

Resolution

Unit Propagation

DPLL

Restarts

SAT application:
reachability

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

Conflict-Driven Clause Learning (CDCL)
Example

¬a ∨ b

¬b ∨ ¬d ∨ e

¬d ∨ ¬e falsified

¬d ∨ ¬e ¬b ∨ ¬d ∨ e

¬b ∨ ¬d ¬a ∨ b

¬a ∨ ¬d a

d¬d

⊥



SAT in AI

Introduction

SAT
NP-completeness

Phase transitions

Resolution

Unit Propagation

DPLL

Restarts

SAT application:
reachability

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

Conflict-Driven Clause Learning (CDCL)
Example

¬a ∨ b

¬b ∨ ¬d ∨ e

¬d ∨ ¬e falsified

a, b

¬d ∨ ¬e ¬b ∨ ¬d ∨ e

¬b ∨ ¬d ¬a ∨ b

¬a ∨ ¬d a

d¬d

⊥



SAT in AI

Introduction

SAT
NP-completeness

Phase transitions

Resolution

Unit Propagation

DPLL

Restarts

SAT application:
reachability

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

Conflict-Driven Clause Learning (CDCL)
Example

¬a ∨ b

¬b ∨ ¬d ∨ e

¬d ∨ ¬e falsified

a, b, c

¬d ∨ ¬e ¬b ∨ ¬d ∨ e

¬b ∨ ¬d ¬a ∨ b

¬a ∨ ¬d a

d¬d

⊥



SAT in AI

Introduction

SAT
NP-completeness

Phase transitions

Resolution

Unit Propagation

DPLL

Restarts

SAT application:
reachability

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

Conflict-Driven Clause Learning (CDCL)
Example

¬a ∨ b

¬b ∨ ¬d ∨ e

¬d ∨ ¬e falsified

a, b, c, d, e

¬d ∨ ¬e ¬b ∨ ¬d ∨ e

¬b ∨ ¬d ¬a ∨ b

¬a ∨ ¬d a

d¬d

⊥



SAT in AI

Introduction

SAT
NP-completeness

Phase transitions

Resolution

Unit Propagation

DPLL

Restarts

SAT application:
reachability

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

Conflict-Driven Clause Learning (CDCL)
Example

¬a ∨ b

¬b ∨ ¬d ∨ e

¬d ∨ ¬e falsified

a, b, c, d, e

¬d ∨ ¬e ¬b ∨ ¬d ∨ e

¬b ∨ ¬d ¬a ∨ b

¬a ∨ ¬d a

d¬d

⊥



SAT in AI

Introduction

SAT
NP-completeness

Phase transitions

Resolution

Unit Propagation

DPLL

Restarts

SAT application:
reachability

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

Conflict-Driven Clause Learning (CDCL)
Example

¬a ∨ b

¬b ∨ ¬d ∨ e

¬d ∨ ¬e falsified

a, b, c, d, e

¬d ∨ ¬e ¬b ∨ ¬d ∨ e

¬b ∨ ¬d ¬a ∨ b

¬a ∨ ¬d a

d¬d

⊥



SAT in AI

Introduction

SAT
NP-completeness

Phase transitions

Resolution

Unit Propagation

DPLL

Restarts

SAT application:
reachability

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

Conflict-Driven Clause Learning (CDCL)
Example

¬a ∨ b

¬b ∨ ¬d ∨ e

¬d ∨ ¬e falsified

a, b, c, d, e

¬d ∨ ¬e ¬b ∨ ¬d ∨ e

¬b ∨ ¬d ¬a ∨ b

¬a ∨ ¬d a

d¬d

⊥



SAT in AI

Introduction

SAT
NP-completeness

Phase transitions

Resolution

Unit Propagation

DPLL

Restarts

SAT application:
reachability

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

Conflict-Driven Clause Learning (CDCL)
Example

¬a ∨ b

¬b ∨ ¬d ∨ e

¬d ∨ ¬e falsified

a, b, c, d, e

¬d ∨ ¬e ¬b ∨ ¬d ∨ e

¬b ∨ ¬d ¬a ∨ b

¬a ∨ ¬d a

d¬d

⊥



SAT in AI

Introduction

SAT
NP-completeness

Phase transitions

Resolution

Unit Propagation

DPLL

Restarts

SAT application:
reachability

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

Conflict-Driven Clause Learning (CDCL)
Procedure

The Reason of a Literal
For each non-decision literal l a reason is recorded: it is the
clause l ∨ φ from which it was derived with ¬φ.

A Basic Clause Learning Procedure

Start with the clause C = l1 ∨ · · · ∨ ln that was falsified.
Resolve it with the reasons l ∨ φ of non-decision literals l until
only decision variables are left.



SAT in AI

Introduction

SAT
NP-completeness

Phase transitions

Resolution

Unit Propagation

DPLL

Restarts

SAT application:
reachability

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

Conflict-Driven Clause Learning (CDCL)
Different variants of the procedure

decision scheme Stop when only decision variables left.
First UIP (Unique Implication Point) Stop when only one

literal of current decision level left.
Last UIP Stop when at the current decision level only the

decision literal is left.

First UIP is usually considered to be the most useful.
Some solvers learn multiple clauses.



SAT in AI

Introduction

SAT
NP-completeness

Phase transitions

Resolution

Unit Propagation

DPLL

Restarts

SAT application:
reachability

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

Conflict-Driven Clause Learning (CDCL)
Forgetting/deleting clauses

In contrast to DPLL, a main problem with CDCL is the high
number of learned clauses.
To avoid memory filling up, large numbers of learned clauses
are deleted at regular intervals, typically based on clause
length, last use, and other criteria.
One interesting strategy is to rank the clauses according to
the number of decision levels appearing in the clause [AS09].



SAT in AI

Introduction

SAT
NP-completeness

Phase transitions

Resolution

Unit Propagation

DPLL

Restarts

SAT application:
reachability

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

Heuristics for CDCL: VSIDS
Variable State Independent Decaying Sum [MMZ+01]

Initially the score s(l) of literal l is its number of occurrences
in F .
When clause with l is learned, increase r(l).
Periodically decay the scores:

s(l) := r(l) + 0.5s(l); r(l) := 0;

Always choose unassigned literal l with maximum s(l).

Variations and extensions of VSIDS most popular in current
solvers.



SAT in AI

Introduction

SAT
NP-completeness

Phase transitions

Resolution

Unit Propagation

DPLL

Restarts

SAT application:
reachability

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

Heavy-tailed runtime distributions

(Diagram from [CGS01]

On many NP-complete problems, heavy-tailed distributions
characterize

runtimes of a randomized algorithm on a single instance and
runtimes of a deterministic algorithm on a class of instances.



SAT in AI

Introduction

SAT
NP-completeness

Phase transitions

Resolution

Unit Propagation

DPLL

Restarts

SAT application:
reachability

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

Heavy-tailed runtime distributions
Estimating the mean is problematic

Diagram from [GSCK00]



SAT in AI

Introduction

SAT
NP-completeness

Phase transitions

Resolution

Unit Propagation

DPLL

Restarts

SAT application:
reachability

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

Heavy-tailed runtime distributions
Cause

A small number of wrong decisions lead to a part of the
search tree not containing any solutions.
Backtrack-style search needs a long time to traverse the
search tree.

Many short paths from the root node to a success leaf node.
High probability of reaching a huge subtree with no solutions.

These properties mean that
average runtime is high,
restarting the procedure after t seconds reduces the mean
substantially, if t is close to the mean of the original
distribution.



SAT in AI

Introduction

SAT
NP-completeness

Phase transitions

Resolution

Unit Propagation

DPLL

Restarts

SAT application:
reachability

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

Restarts in SAT algorithms
Answer to heavy-tailedness

Restarts had been used in stochastic local search algorithms:
Necessary for escaping local minima!

Gomes et al. demonstrated the utility of restarts for systematic
SAT solvers:

Small amount of randomness in branching variable selection.
Restart the algorithm after a given number of seconds.



SAT in AI

Introduction

SAT
NP-completeness

Phase transitions

Resolution

Unit Propagation

DPLL

Restarts

SAT application:
reachability

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

Restarts with CDCL

Learned clauses are retained when doing the restart.
Problem: Optimal restart policy depends on the runtime
distribution, which is generally not known.
Problem: Deletion of learned clauses and too early restarts
may lead to non-termination for unsatisfiable formulas. This
is avoided by gradually increasing restart interval.
One effective restart strategy is based on the Luby series
n = 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, ..., learning e.g. 30n
clauses between consecutive restarts [Hua07].



SAT in AI

Introduction

SAT
NP-completeness

Phase transitions

Resolution

Unit Propagation

DPLL

Restarts

SAT application:
reachability

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

Application: Reachability

finding a path from a state from in I to a state in set G in a
succinctly/compactly represented graph
PSPACE-complete [GW83, Loz88, LB90, Byl94]
in NP when restricted to paths of polynomial length
Basis of efficient solutions to

planning problem in AI [KS92, KS96]
LTL model-checking problem [BCCZ99]
DES diagnosis problem [GARK07]

Often replacing traditional state-space search methods
One of the first and most prominent applications of SAT
Extensions to timed systems with SAT modulo Theories
(SMT)



SAT in AI

Introduction

SAT
NP-completeness

Phase transitions

Resolution

Unit Propagation

DPLL

Restarts

SAT application:
reachability

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

State-space transition graphs
Blocks world with three blocks



SAT in AI

Introduction

SAT
NP-completeness

Phase transitions

Resolution

Unit Propagation

DPLL

Restarts

SAT application:
reachability

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

State-space search and satisfiability
Explicit state-space search; symbolic search with BDDs, SAT
19

68

19
86

19
88

19
90

19
92

19
94

19
96

19
98

20
00

A∗
partial-order reduction

symmetry reduction

BDDs
Symbolic Model-Checking

DNNF

Planning as SAT
SATPLAN

GRASP
SATZ
Bounded Model-Checking
Chaff



SAT in AI

Introduction

SAT
NP-completeness

Phase transitions

Resolution

Unit Propagation

DPLL

Restarts

SAT application:
reachability

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

Transition relations in propositional logic

State variables are
X = {a, b, c}.

(¬a ∧ b ∧ c ∧ ¬a′ ∧ b′ ∧ ¬c′)∨
(¬a ∧ b ∧ ¬c ∧ a′ ∧ b′ ∧ ¬c′)∨
(¬a ∧ ¬b ∧ c ∧ a′ ∧ b′ ∧ c′)∨
(a ∧ b ∧ c ∧ a′ ∧ b′ ∧ ¬c′)

The corresponding matrix is
000 001 010 011 100 101 110 111

000 0 0 0 0 0 0 0 0
001 0 0 0 0 0 0 0 1
010 0 0 0 0 0 0 1 0
011 0 0 1 0 0 0 0 0
100 0 0 0 0 0 0 0 0
101 0 0 0 0 0 0 0 0
110 0 0 0 0 0 0 0 0
111 0 0 0 0 0 0 1 0

000

001
010

011

100

101
110

111



SAT in AI

Introduction

SAT
NP-completeness

Phase transitions

Resolution

Unit Propagation

DPLL

Restarts

SAT application:
reachability

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

Transition relations in propositional logic

Let X = {x1, . . . , xn} be the state variables.

Any deterministic action/event corresponds to a partial
function.
Partial functions correspond to conjunctions of a precondition
formula Π(x1, . . . , xn) and equivalences

x′i ↔ F (x1, . . . , xn)

for every xi ∈ X.
Choice between actions/events α1, . . . , αk corresponds to

Φ = α1 ∨ · · · ∨ αk.



SAT in AI

Introduction

SAT
NP-completeness

Phase transitions

Resolution

Unit Propagation

DPLL

Restarts

SAT application:
reachability

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

Reachability as SAT

Let Φ(n,m) denote the formula obtained from Φ by replacing each
x ∈ X by x@n and each x′ by x@m.
Then satisfying valuations of

Φ(0, 1) ∧ Φ(1, 2) ∧ · · ·Φ(n− 1, n)

are in 1-to-1 correspondence to paths of length n in the transition
graph.

Testing whether a state satisfying G can be reached from a state
satisfying I in n steps reduces to testing the satisfiability of

I(0) ∧ Φ(0, 1) ∧ Φ(1, 2) ∧ · · ·Φ(n− 1, n) ∧G(n).



SAT in AI

Introduction

SAT
NP-completeness

Phase transitions

Resolution

Unit Propagation

DPLL

Restarts

SAT application:
reachability

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

Applications

Interpretations of SAT tests

I(0) ∧ Φ(0, 1) ∧ Φ(1, 2) ∧ · · ·Φ(n− 1, n) ∧G(n).

Planning Can goals G be reached from the initial state I [KS96]?
Model-checking Can the safety property ¬G be violated on

executions that start from I? (Extensions for LTL
model-checking in [BCCZ99].)

DES Diagnosis Consider

Φ(0, 1)∧Φ(1, 2)∧· · ·Φ(n−1, n)∧(o1@t1∧· · ·∧om@tm)∧F.

Are observations o1, . . . , om respectively at t1, . . . , tm
compatible with fault assumptions F [GARK07]?
F encodes e.g. “there are n faults between time points
0 and n.



SAT in AI

Introduction

SAT
NP-completeness

Phase transitions

Resolution

Unit Propagation

DPLL

Restarts

SAT application:
reachability

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

Applications

The most basic encodings given above can often be improved.

optimal (linear-size) encodings [LBHJ04, RHN06]
multiple actions in parallel [RHN06]
scheduling the SAT tests for different path lengths
[Rin04, Zar04] in parallel
search heuristics replacing VSIDS [Gan11, Rin10, Rin12b]
reachability-specific implementation technology [Rin12a]



SAT in AI

Introduction

SAT

MAXSAT
Algorithms

Applications

Application: MPE

Application:
Structure Learning

#SAT

SSAT

SMT

Conclusion

References

MAXSAT
Motivation

Many AI problems involve optimization:
Learn an explanation with the best match to data [Cus08].
Find a least-cost plan [RGPS10].
Select best drugs for cancer therapy [LK12].

SAT insufficient: answers a binary yes–no question
MAXSAT extends SAT with a basic form of optimization.
Other frameworks: Mixed Integer-Linear Programming
(MILP/ILP/MIP), constraint programming and optimization
[DRGN10], SMT + optimization [ST12]
advantage over MILP: efficient Boolean reasoning



SAT in AI

Introduction

SAT

MAXSAT
Algorithms

Applications

Application: MPE

Application:
Structure Learning

#SAT

SSAT

SMT

Conclusion

References

Introduction: (Weighted) (Partial) MAXSAT

plain MAXSAT Maximize the number of satisfied clauses
partial MAXSAT Maximize the number of satisfied soft clauses

Hard clauses must be satisfied
weighted MAXSATMaximize the sum of weights of satisfied

clauses

Decision problem “is there an valuation with weight ≥ n”
NP-complete.

The FPNP optimization problem solvable by a polynomial number
of SAT calls.



SAT in AI

Introduction

SAT

MAXSAT
Algorithms

Applications

Application: MPE

Application:
Structure Learning

#SAT

SSAT

SMT

Conclusion

References

Algorithms for MAXSAT

reduction to a sequence of SAT problems
[FM06, ABL13, DB11]
branch and bound [HLO08, LMMP10]
Mixed Integer Linear Programming [DB13] (CPLEX)

Some MAXSAT solvers

dfs + bounding MaxSatz, MiniMaxSat
SAT sat4j, wbo, wpm, pwbo, maxhs



SAT in AI

Introduction

SAT

MAXSAT
Algorithms

Applications

Application: MPE

Application:
Structure Learning

#SAT

SSAT

SMT

Conclusion

References

MAXSAT by a sequence of SAT queries

1 From a weighted partial MAXSAT instance, construct a SAT
instance [FM06, ABL13]:

Hard clauses are taken as is.
For each soft clause l1 ∨ · · · ∨ ln, have b ∨ l1 ∨ · · · ∨ ln, where b
is a new auxiliary variable.

2 If the SAT instance is unsatisfiable, the best valuation so far
is the globally best (And if this was the first time here, the
hard clauses are unsatisfiable.)

3 Otherwise, each true b variable corresponds to a (possibly)
false soft clause.

4 Calculate the sum F of the weights of true soft clauses.
5 Construct a new SAT instance, with cardinality constraints

[BB03, Sin05] requiring that weights of true soft clauses > F .
6 One can also add a clause requiring at least one previously

false soft clause to be true. (unsatisfiable cores [ABL13])
7 Continue from step 2.



SAT in AI

Introduction

SAT

MAXSAT
Algorithms

Applications

Application: MPE

Application:
Structure Learning

#SAT

SSAT

SMT

Conclusion

References

Other query strategies

Given SAT instances saying “at most k soft clauses are false”,
alternative query strategies are possible.

unsatisfiability based: try k = 0, then k = 1, and so on.
satisfiability based: try k = kmax − 1, then k = kmax − 2, and
so on.
binary search: try half-way between 0 and kmax, and after
tightening either lower or upper bound, then again half-way.

Same question of SAT queries with different parameter values k
arises also in other SAT and constraints applications, including
planning and scheduling, with other algorithms proposed
[Rin04, SS07]. (Usefulness of these algorithms to MAXSAT is not
clear.)



SAT in AI

Introduction

SAT

MAXSAT
Algorithms

Applications

Application: MPE

Application:
Structure Learning

#SAT

SSAT

SMT

Conclusion

References

Bayesian networks

Compact representation of
probability distributions [Pea89]
Makes probabilistic dependence
and independence explicit.
lots of applications e.g. in
intelligent robotics, especially for
dynamic Bayesian networks
Other graphical models: Markov
networks [Pea89]

season location

temperaturerain soil

plant growth



SAT in AI

Introduction

SAT

MAXSAT
Algorithms

Applications

Application: MPE

Application:
Structure Learning

#SAT

SSAT

SMT

Conclusion

References

Bayesian networks

Probabilistic Inference (PI): calculate marginal probability of a
variable given evidence
Most Probable Explanation (MPE): find a valuation for the
variables with the highest probability
Maximum A Posteriori hypothesis (MAP) [PD04]: find
hypotheses that explain the observations best
Structure Learning (SL): find Bayesian network that best
matches given data

problem complexity SAT variant
PI #P #SAT
MPE FPNP MAXSAT
MAP NPPP E-MAJSAT (SSAT)
SL FPNP MAXSAT



SAT in AI

Introduction

SAT

MAXSAT
Algorithms

Applications

Application: MPE

Application:
Structure Learning

#SAT

SSAT

SMT

Conclusion

References

MPE: Most Probable Explanation

Of all valuations of the variables, find one with the highest
probability.
Has the flavor of diagnosis problems (but see the MAP
problem later!)
Solution e.g. by reduction to MAXSAT [KD99, Par02]

A

A B P (A|B)
0 0 0.6
1 0 0.4
0 1 0.8
1 1 0.2

B

B P (B)
0 0.5
1 0.5

C

C P (C)
0 0.9
1 0.1

D

D B P (D|B)
0 0 1.0
1 0 0.0
0 1 0.2
1 1 0.8



SAT in AI

Introduction

SAT

MAXSAT
Algorithms

Applications

Application: MPE

Application:
Structure Learning

#SAT

SSAT

SMT

Conclusion

References

Reduction of MPE to MAXSAT

A B P (A|B)
0 0 0.6
1 0 0.4
0 1 0.8
1 1 0.2

translates to

¬A ∧ ¬B probability 0.6
¬A ∧B probability 0.4
A ∧ ¬B probability 0.8
A ∧B probability 0.2

Problem 1: Probabilities must be multiplied to get the overall
probability.
Solution: Sum the logarithms of the probabilities.
Problem 2: Probabilities 0 correspond to log 0 =∞.
Solution: Use hard clauses.
Negate the conjunctions to get clauses.
Negate log p (with p ≤ 1) to get positive weights.



SAT in AI

Introduction

SAT

MAXSAT
Algorithms

Applications

Application: MPE

Application:
Structure Learning

#SAT

SSAT

SMT

Conclusion

References

Structure Learning for Bayesian network

ABCD
0000
0101
1000
0101
0000
1101
0010
1000
0101
0100

A

A B P (A|B)
0 0 0.6
1 0 0.4
0 1 0.8
1 1 0.2

B

B P (B)
0 0.5
1 0.5

C

C P (C)
0 0.9
1 0.1

D

D B P (D|B)
0 0 1.0
1 0 0.0
0 1 0.2
1 1 0.8



SAT in AI

Introduction

SAT

MAXSAT
Algorithms

Applications

Application: MPE

Application:
Structure Learning

#SAT

SSAT

SMT

Conclusion

References

Structure Learning for Bayesian networks
Mapping to Constraint Satisfaction, including MAXSAT

The score of a network is the sum of all per-node scores.
The score of each node is determined by its parents: each
alternative parent set has a score.
Constraint satisfaction formulation:

Choose a parent set for each node. (E.g. max. 3 parents)
The resulting graph must be acyclic.
Objective: maximize the sum of the parent set scores.

main challenge in encoding: acyclicity constraint
transitive ancestor relation [Cus08]
total ordering of nodes [Cus08]
recursively define distance from leaf 0, 1, 2, ...



SAT in AI

Introduction

SAT

MAXSAT
Algorithms

Applications

Application: MPE

Application:
Structure Learning

#SAT

SSAT

SMT

Conclusion

References

Structure Learning for Bayesian networks

Finding optimal nets translatable into MAXSAT, MILP etc.
Optimal solutions found for nets of up to some dozens of
nodes.
On many standard benchmarks, MAXSAT and MILP solvers
comparable.
Best methods enhance MILP with specialized heuristics
[Cus11].

Methods used for approximate solutions are different!



SAT in AI

Introduction

SAT

MAXSAT

#SAT
Algorithms

Application:
Probabilistic
Inference

SSAT

SMT

Conclusion

References

Model-Counting (#SAT)

How many satisfying valuations does a propositional formula
have?
The problem is #P-complete [Val79].
Interestingly, model-counting is #P-complete also when SAT
is easy (in P): DNF-SAT, 2-SAT, Horn-SAT, ... [Val79].
#P harder than NP: φ ∈SAT if and only if model-count ≥ 1



SAT in AI

Introduction

SAT

MAXSAT

#SAT
Algorithms

Application:
Probabilistic
Inference

SSAT

SMT

Conclusion

References

Weighted Model-Counting

Weighted Model-Counting assigns a weight to each literal.
Compute the sum of the weights of satisfying valuations.
Weight of a valuation is the product of weights of true literals.
This generalization is useful e.g. for probabilistic reasoning.
Coincides with unweighted MC when all weights are 1.



SAT in AI

Introduction

SAT

MAXSAT

#SAT
Algorithms

Application:
Probabilistic
Inference

SSAT

SMT

Conclusion

References

Algorithms for Model Counting

exact algorithms: extensions of DPLL and CDCL
[BDP03, BDP09, SBB+04, SBK05a, GSS09]
approximate counting (upper bound)
approximate counting (no guaranteed lower or upper bound)
[KSS11]



SAT in AI

Introduction

SAT

MAXSAT

#SAT
Algorithms

Application:
Probabilistic
Inference

SSAT

SMT

Conclusion

References

Algorithms
extensions of DPLL and CDCL

basic algorithm: DPLL-style tree search
connected components [BP00]
component caching [BDP03]
combining clause-learning with component caching
[SBB+04]
heuristics [SBK05a]



SAT in AI

Introduction

SAT

MAXSAT

#SAT
Algorithms

Application:
Probabilistic
Inference

SSAT

SMT

Conclusion

References

Basic model-counting DPLL algorithm

Consider a model-counting run of DPLL for a formula with
propositional variables X.

Two branches {x} ∪ C and {¬x} ∪ C disjoint =⇒ take the
sum the respective model counts.
When DPLL detects that all clauses are satisfied with n
variables assigned, the count for the branch is

2|X|−n



SAT in AI

Introduction

SAT

MAXSAT

#SAT
Algorithms

Application:
Probabilistic
Inference

SSAT

SMT

Conclusion

References

Component analysis and component caching

Enhancements to the basic model-counting DPLL (e.g. in Cachet
[SBB+04]):

Component analysis: if C can be partitioned to (C1, . . . , Cn)
so that partitions don’t share variables, then count each Ci

separately and take the product of the counts [BP00]
Component caching [BDP03]: record model-counts and
recall them when encountering a clause set again.



SAT in AI

Introduction

SAT

MAXSAT

#SAT
Algorithms

Application:
Probabilistic
Inference

SSAT

SMT

Conclusion

References

Efficient model-counts for normal forms

Model-counting for CNF (#SAT) is #P-complete [Val79].
Some normal forms have polynomial time model-counting.

Binary Decision Diagrams (BDD) [Bry92]
deterministic Decomposable Negation Normal Form (d-DNNF)
[Dar02]

Reaching these normal forms can take exponential time,
space.
Some of the best translators for these normal forms [HD07]
are similar to the model-counting variants of the
Davis-Putnam procedure, for example in utilizing component
analysis.



SAT in AI

Introduction

SAT

MAXSAT

#SAT
Algorithms

Application:
Probabilistic
Inference

SSAT

SMT

Conclusion

References

MC Applications: Bayesian inference

optimal distinguishing tests [HS09]
Bayesian inference [BDP09, SBK05b, CD08], calculating
marginal probabilities of some variables given values of other
variables of a Bayesian network.
(There are interesting connections between specialized
Bayesian inference algorithms and model-counting
algorithms. E.g., many can be viewed as instances of
algorithms for the SumProd problem [BDP09].)



SAT in AI

Introduction

SAT

MAXSAT

#SAT
Algorithms

Application:
Probabilistic
Inference

SSAT

SMT

Conclusion

References

Probabilistic Inference by Model-Counting
Marginal probability of given evidence

A

A B P (A|B)
0 0 0.6
1 0 0.4
0 1 0.8
1 1 0.2

B

B P (B)
0 0.5
1 0.5

C

C P (C)
0 0.9
1 0.1

D

D B P (D|B)
0 0 1.0
1 0 0.0
0 1 0.2
1 1 0.8

Variable for each node A,B,C,D.
Parentless nodes have the obvious
weights w(B) = w(¬B) = 0.5,
w(C) = 0.1, w(¬C) = 0.9.
Chance variables cA|B and cA|¬B for
nodes with parents.
w(cA|B) = 0.2 w(¬cA|B) = 0.8
w(cA|¬B) = 0.4 w(¬cA|¬B) = 0.6

w(A) = 1 w(A) = 1

B ∧ cA|B→A
B ∧ ¬cA|B→¬A
¬B ∧ cA|¬B→A
¬B ∧ ¬cA|¬B→¬A
Conditioning with evidence B,¬C by
adding in the clause set.



SAT in AI

Introduction

SAT

MAXSAT

#SAT

SSAT
Algorithms

SSAT applications

SMT

Conclusion

References

Stochastic Satisfiability SSAT

Stochastic satisfiability [Pap85] extends propositional logic
with stochastic AND-OR quantification. (An extension of
Quantified Boolean formulas (QBF) [Sto76]).
Prefix consisting of variables quantified by ∃, ∀ and

Rr,
followed by a propositional formula.

In SSAT, the probability P (φ) associated with a formula φ is
defined recursively as follows.

Base case: variable free (quantifier free) formulas containing
only atomic formulas ⊥ and > and Boolean connectives.
P (>) = 1.0
P (⊥) = 0.0

P (∃xφ) = max(P (φ[>/x]), P (φ[⊥/x]))

P (

Rrxφ) = r × P (φ[>/x]) + (1− r)× P (φ[⊥/x])

P (∀xφ) = min(P (φ[>/x]), P (φ[⊥/x]))

Question: Is P (φ) ≥ R for some R ∈ [0, 1[?



SAT in AI

Introduction

SAT

MAXSAT

#SAT

SSAT
Algorithms

SSAT applications

SMT

Conclusion

References

Stochastic Satisfiability SSAT
Special cases

SSAT can be viewed as a generalization of

SAT: quanfiers ∃ only
TAUT: quanfiers ∀ only
quantified Boolean formulas (QBF): quantifiers ∃, ∀ only
[Sto76]
E-MAJSAT: prefix ∃∃ · · · ∃

Rr1 Rr2 · · ·

Rrn [PD09b]



SAT in AI

Introduction

SAT

MAXSAT

#SAT

SSAT
Algorithms

SSAT applications

SMT

Conclusion

References

Algorithms for E-MAJSAT and SSAT

Basic approach [Lit99, LMP01]:
DPLL-style tree search
variables selected in quantification order
prune subtrees if irrelevant for establishing the lb R
(thresholding [ML03])
component caching (as in model-counting #SAT)

Implementations reported by Majercik, Littman, Boots
[ML03, MB05].
resolution rule [TF10] (following QBF resolution [KBKF95])
SMT-style extension to cover the orthogonal problem of
combining SAT with linear arithmetics (SSMT [TEF11])



SAT in AI

Introduction

SAT

MAXSAT

#SAT

SSAT
Algorithms

SSAT applications

SMT

Conclusion

References

Applications

Maximum A Posteriori Hypothesis (MAP) is NPPP-complete
[PD04], corresponding to E-MAJSAT (∃ · · ·

Rr · · · )
MAP application: diagnosis
Probabilistic verification of safety critical systems: what is the
probability that event x will take place? [TF11]
probabilistic planning [ML03]



SAT in AI

Introduction

SAT

MAXSAT

#SAT

SSAT
Algorithms

SSAT applications

SMT

Conclusion

References

MAP: Maximum A Posteriori Hypothesis

MPE finds a single most probable valuation of variables.
The probability of this valuation is typically low, and it is often
not representative of the most likely fault e.g. in diagnosis.
The Maximum A Posteriori Hypothesis (MAP) problem
[PD04]:
Find a valuation to a subset of hypothesis variables H that
maximizes the probability of the given observations.
Decision version of MAP is NPPP-complete: guess a
valuation of H; then verify that the probability of the
observations is ≥ r for a given bound r.



SAT in AI

Introduction

SAT

MAXSAT

#SAT

SSAT
Algorithms

SSAT applications

SMT

Conclusion

References

MAP: Maximum A Posteriori Hypothesis
Encoding as E-MAJSAT

How to choose hypotheses h1, . . . , hn to maximize the
probability expressed by
∃x1∃x2 · · · ∃xn

R0.5y1 · · ·

R0.5ymφ
Encoding like Probabilistic Inference with Model-Checking.
Difference is quantification:

∃h1∃h2 · · · ∃hn

Rw1x1 · · ·

RwmxmΦ

where x1, ..., xm are all the non-hypothesis variables with the
same weights w1, . . . , wm as in the Probabilistic Inference
problem.



SAT in AI

Introduction

SAT

MAXSAT

#SAT

SSAT
Algorithms

SSAT applications

SMT

Conclusion

References

Probabilistic planning by SSAT
[ML98]

∃P

RqC∃E

(
I0→

(
t−1∧
i=0

T (i, i+ 1) ∧Gt

))
(1)

1 1st block: ∃-quantification over all action sequences
2 2nd block:

R

-quantification over all contingencies
3 3rd block: ∃-quantification over all executions of the plan



SAT in AI

Introduction

SAT

MAXSAT

#SAT

SSAT

SMT
Algorithms

Application: Timed
Systems

Conclusion

References

SMT: Satisfiability Modulo Theories

numbers needed in representing
time
space (distance, size, ...)
resources (money, materials, ...)

SAT has no numbers: reduction to SAT is feasible only for
small integers
SAT modulo Theories = SAT + specialized solvers for specific
theories, such as

linear integer/rational/real arithmetic
bitvectors
graphs

Similar to constraint programming frameworks.



SAT in AI

Introduction

SAT

MAXSAT

#SAT

SSAT

SMT
Algorithms

Application: Timed
Systems

Conclusion

References

Basic ideas of SMT

Not everything is compactly expressible and efficiently
solvable if only Boolean variables are used, for example real
and rational arithmetics.
SAT can be extended with non-Boolean theories. A clause
has the form

l1 ∨ · · · ∨ ln ∨ E

where E is a set of quantifier-free inequations over some set
V of real/rational/other variables.
The theories can be e.g.

linear inequalities,
mixed integer integer linear programs, or
something completely different.

Compare: mixed integer linear programming MILP



SAT in AI

Introduction

SAT

MAXSAT

#SAT

SSAT

SMT
Algorithms

Application: Timed
Systems

Conclusion

References

SMT: Algorithms
Implementation

Extension of DPLL to theories
1 Run DPLL ignoring the inequations in the clauses.
2 After all Boolean variables have been set (at a leaf of the

DPLL search tree), take the inequations E1, . . . , Em from all
clauses that have no true literal.

3 Test with a specialized solver if E1 ∪ · · · ∪ Em is solvable. If it
is, terminate.

4 Otherwise backtrack with the DPLL algorithm.

The general idea is easy to implement for different theories,
e.g. linear arithmetic.
Early pruning of the DPLL search tree can be achieved by
running the arithmetic solver before all Boolean variables are
set.



SAT in AI

Introduction

SAT

MAXSAT

#SAT

SSAT

SMT
Algorithms

Application: Timed
Systems

Conclusion

References

SMT applications

reachability with numeric state variables: planning with
resources [WW99]
reachability for timed transition systems: model-checking of
timed systems [ACKS02], planning [SD05])



SAT in AI

Introduction

SAT

MAXSAT

#SAT

SSAT

SMT
Algorithms

Application: Timed
Systems

Conclusion

References

Timed systems reachability

The most basic reachability problem (e.g. classical planning)
is about instantaneous/asynchronous changes of (discrete)
state variables.
In timed systems, change may have a duration or a delay.
Multiple simultaneous overlapping changes
Change of continuous state variables may be continuous.
Lots of applications: model-checking/verification of timed
systems, temporal planning, temporal diagnosis, ...



SAT in AI

Introduction

SAT

MAXSAT

#SAT

SSAT

SMT
Algorithms

Application: Timed
Systems

Conclusion

References

SMT formalization of Timed Systems

Represent system state at
time points where something
non-continuous happens.

Action is taken.
Delayed effect of action
takes place.
A continuously
changing variable
reaches a critical value.



SAT in AI

Introduction

SAT

MAXSAT

#SAT

SSAT

SMT
Algorithms

Application: Timed
Systems

Conclusion

References

SMT formalization of Timed Systems
Actions and counters

Variable ∆@t indicates duration between time points t− 1 and t.

Following is for actions a, state variables x, and counters C.
precondition of action a@t→φ@t
counter initialization a@t→(C@t = c)
counter update ¬a@t→(C@t = C@(t− 1)−∆t)
discrete change (C@t = 0)→x@t
discrete change (C@t = 0)→¬x@t
frame axiom (x@(t− 1) ∧ ¬x@t)→(C1@t > 0 ∨ · · ·

Additionally, we need formulas to prevent overlap of actions using
same resources.



SAT in AI

Introduction

SAT

MAXSAT

#SAT

SSAT

SMT
Algorithms

Application: Timed
Systems

Conclusion

References

SMT formalization of Timed Systems
Progress of time

Progress of time ∆@t between points t− 1 and t.
progress always positive ∆@t > 0
don’t pass a scheduled change ∆@t ≤ Ck@(t− 1)



SAT in AI

Introduction

SAT

MAXSAT

#SAT

SSAT

SMT
Algorithms

Application: Timed
Systems

Conclusion

References

SMT applications

Timed and hybrid systems analysis and verification [ABCS05]
Planning in timed and hybrid systems [SD05]
Timed and hybrid systems diagnosis:

Representation of observations: absolute time points
Representation of observations: temporal uncertainty



SAT in AI

Introduction

SAT

MAXSAT

#SAT

SSAT

SMT
Algorithms

Application: Timed
Systems

Conclusion

References

Other approaches to Timed Systems
Reachability

Explicit state-space search in the space of timed states (e.g.
the UPPAAL model-checker [BLL+96])
Generate untimed transition sequences with SAT, then test
whether possible to schedule [RGS13].
Each method has strengths in different types of problems.



SAT in AI

Introduction

SAT

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

Conclusion
Algorithms

NP-complete problems have become more solvable since
mid-1990ies
strength of algorithms such as CDCL over a wide range of
SAT problems and applications
convergence of search methods in different areas:

Probabilistic Inference for Bayesian networks vs.
Model-Counting (#SAT)
reachability in AI planning and Computer Aided Verification

increasing connections to combinatorial optimization
methods, e.g. Mixed Integer Linear Programming



SAT in AI

Introduction

SAT

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

Conclusion
Problems

mappings complexity class - SAT variant - AI problem for
reachability, planning, games:
NP SAT succinct reachability (poly-length paths)
NP SMT timed systems reachability (poly-length paths)
NPPP SSAT succinct stochastic reachability (poly-length paths)
PSPACE QBF (succinct) 2-player games winning strategies
PSPACE SSAT stochastic 2-player games optimal strategies

probabilistic reasoning:
FPNP MAXSAT Bayesian network MPE, SL
#P #SAT Bayesian network PI
NPPP E-MAJSAT Bayesian network MAP



SAT in AI

Introduction

SAT

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

References I

Gilles Audemard, Marco Bozzano, Alessandro Cimatti, and Roberto Sebastiani.
Verifying industrial hybrid systems with MathSAT.
Electronic Notes in Theoretical Computer Science, 119(2):17–32, 2005.

Ansótegui, Maria Luisa Bonet, and Jordi Levy.
SAT-based MaxSAT algorithms.
Artificial Intelligence, 196:77–105, 2013.

Gilles Audemard, Alessandro Cimatti, Artur Korniłowicz, and Roberto Sebastiani.
Bounded model checking for timed systems.
In Formal Techniques for Networked and Distributed Systems - FORTE 2002, number
2529 in Lecture Notes in Computer Science, pages 243–259. Springer-Verlag, 2002.

Gilles Audemard and Laurent Simon.
Predicting learnt clauses quality in modern SAT solvers.
In Proceedings of the 21st International Joint Conference on Artificial Intelligence,
pages 399–404. Morgan Kaufmann Publishers, 2009.

Olivier Bailleux and Yacine Boufkhad.
Efficient CNF encoding of Boolean cardinality constraints.
In Francesca Rossi, editor, Principles and Practice of Constraint Programming – CP
2003: 9th International Conference, Kinsale, Ireland, September 29 – October 3, 2003,
Proceedings, volume 2833 of Lecture Notes in Computer Science, pages 108–122.
Springer-Verlag, 2003.



SAT in AI

Introduction

SAT

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

References II

Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu.
Symbolic model checking without BDDs.
In W. R. Cleaveland, editor, Tools and Algorithms for the Construction and Analysis of
Systems, Proceedings of 5th International Conference, TACAS’99, volume 1579 of
Lecture Notes in Computer Science, pages 193–207. Springer-Verlag, 1999.

Fahiem Bacchus, Shannon Dalmao, and Toniann Pitassi.
Algorithms and complexity results for #SAT and Bayesian inference.
In Foundations of Computer Science, 2003. Proceedings. 44th Annual IEEE
Symposium on, pages 340–351. IEEE, 2003.

Fahiem Bacchus, Shannon Dalmao, and Toniann Pitassi.
Solving #SAT and Bayesian inference with backtracking search.
Journal of Artificial Intelligence Research, 34(2):391–442, 2009.

Daniel R. Brooks, Esra Erdem, Selim T. Erdoğan, James W. Minett, and Don Ringe.
Inferring phylogenetic trees using answer set programming.
Journal of Automated Reasoning, 39(4):471–511, 2007.

Paul Beame, Henry Kautz, and Ashish Sabharwal.
Towards understanding and harnessing the potential of clause learning.
Journal of Artificial Intelligence Research, 22:319–351, 2004.



SAT in AI

Introduction

SAT

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

References III

Johan Bengtsson, Kim Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi.
UPPAAL - a tool suite for automatic verification of real-time systems.
In Hybrid Systems III, volume 1066 of Lecture Notes in Computer Science, pages
232–243. Springer-Verlag, 1996.

Robert J Bayardo and Joseph Daniel Pehoushek.
Counting models using connected components.
In Proceedings of the 17th National Conference on Artificial Intelligence (AAAI-2000)
and the 12th Conference on Innovative Applications of Artificial Intelligence (IAAI-2000),
pages 157–162. AAAI Press / The MIT Press, 2000.

R. E. Bryant.
Symbolic Boolean manipulation with ordered binary decision diagrams.
ACM Computing Surveys, 24(3):293–318, September 1992.

Maria Luisa Bonet and Katherine St. John.
Efficiently calculating evolutionary tree measures using SAT.
In Proceedings of the 11th International Conference on Theory and Applications of
Satisfiability Testing (SAT-2009), pages 4–17. Springer-Verlag, 2009.

Tom Bylander.
The computational complexity of propositional STRIPS planning.
Artificial Intelligence, 69(1-2):165–204, 1994.



SAT in AI

Introduction

SAT

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

References IV

Mark Chavira and Adnan Darwiche.
On probabilistic inference by weighted model counting.
Artificial Intelligence, 172(6-7):772–799, 2008.

Orly Cohen, Moran Gordon, Michael Lifshits, Alexander Nadel, and Vadim Ryvchin.
Designers work less with quality formal equivalence checking.
In Design and Verification Conference (DVCon), 2010.

Hubie Chen, Carla Gomes, and Bart Selman.
Formal models of heavy-tailed behavior in combinatorial search.
In Toby Walsh, editor, Proceedings of the 7th International Conference on Principles
and Practice of Constraint Programming, number 2239 in Lecture Notes in Computer
Science, pages 408–421. Springer-Verlag, 2001.

S. A. Cook.
The complexity of theorem proving procedures.
In Proceedings of the Third Annual ACM Symposium on Theory of Computing, pages
151–158, 1971.

James Cussens.
Bayesian network learning by compiling to weighted MAX-SAT.
In UAI’08, Proceedings of the 24th Conference in Uncertainty in Artificial Intelligence,
pages 105–112, 2008.



SAT in AI

Introduction

SAT

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

References V

James Cussens.
Bayesian network learning with cutting planes.
In Proceedings of the Twenty-Seventh Conference Annual Conference on Uncertainty in
Artificial Intelligence (UAI-11), pages 153–160. AUAI Press, 2011.

Adnan Darwiche.
A compiler for deterministic, decomposable negation normal form.
In Proceedings of the 18th National Conference on Artificial Intelligence (AAAI-2002)
and the 14th Conference on Innovative Applications of Artificial Intelligence (IAAI-2002),
pages 627–634, 2002.

Jessica Davies and Fahiem Bacchus.
Solving MAXSAT by solving a sequence of simpler SAT instances.
In Principles and Practice of Constraint Programming - CP 2011, 17th International
Conference, volume 6876 of Lecture Notes in Computer Science, pages 225–239.
Springer, 2011.

Jessica Davies and Fahiem Bacchus.
Exploiting the power of MIPs solvers in MaxSAT.
In Proceedings of the 14th International Conference on Theory and Applications of
Satisfiability Testing (SAT-2013), Lecture Notes in Computer Science. Springer-Verlag,
2013.

W. F. Dowling and J. H. Gallier.
Linear-time algorithms for testing the satisfiability of propositional Horn formulae.
Journal of Logic Programming, 1(3):267–284, 1984.



SAT in AI

Introduction

SAT

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

References VI

Evgeny Dantsin, Andreas Goerdt, Edward A. Hirsch, Ravi Kannan, Jon M. Kleinberg,
Christos H. Papadimitriou, Prabhakar Raghavan, and Uwe Schöning.
A deterministic (2− 2/(k + 1))n algorithm for k-SAT based on local search.
Theoretical Computer Science, 289(1):69–83, 2002.

Evgeny Dantsin, Edward A. Hirsch, and Alexander Wolpert.
Clause shortening combined with pruning yields a new upper bound for deterministic
SAT algorithms.
Electronic Colloquium on Computational Complexity (ECCC), 102, 2005.

M. Davis, G. Logemann, and D. Loveland.
A machine program for theorem proving.
Communications of the ACM, 5:394–397, 1962.

Luc De Raedt, Tias Guns, and Siegfried Nijssen.
Constraint programming for data mining and machine learning.
In Proceedings of the 24th AAAI Conference on Artificial Intelligence (AAAI-10), pages
1513–1518. AAAI Press, 2010.

Zhaohui Fu and Sharad Malik.
On solving the partial MAX-SAT problem.
In Armin Biere and CarlaP. Gomes, editors, Theory and Applications of Satisfiability
Testing - SAT 2006, volume 4121 of Lecture Notes in Computer Science, pages
252–265. Springer-Verlag, 2006.



SAT in AI

Introduction

SAT

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

References VII

Malay K. Ganai.
DPLL-based SAT solver using with application-aware branching, July 2011.
patent US 2011/0184705 A1; filed August 31, 2010; provisional application January 26,
2010.

Alban Grastien, Anbulagan, Jussi Rintanen, and Elena Kelareva.
Diagnosis of discrete-event systems using satisfiability algorithms.
In Proceedings of the 22nd AAAI Conference on Artificial Intelligence (AAAI-07), pages
305–310. AAAI Press, 2007.

J. Gaschnig.
A general backtrack algorithm that eliminates most redundant tests.
In Proceedings of the 5th International Joint Conference on Artificial Intelligence, pages
457–457, 1977.

C. P. Gomes, B. Selman, N. Crato, and H. Kautz.
Heavy-tailed phenomena in satisfiability and constraint satisfaction problems.
Journal of Automated Reasoning, 24(1–2):67–100, 2000.

Carla P. Gomes, Ashish Sabharwal, and Bart Selman.
Model counting.
In Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of
Satisfiability. IOS Press, 2009.



SAT in AI

Introduction

SAT

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

References VIII

Hana Galperin and Avi Wigderson.
Succinct representations of graphs.
Information and Control, 56:183–198, 1983.
See [Loz88] for a correction.

Jinbo Huang and Adnan Darwiche.
The language of search.
Journal of Artificial Intelligence Research, 29:191–219, 2007.

Edward A. Hirsch.
New worst-case upper bounds for SAT.
Journal of Automated Reasoning, 24(4):397–420, 2000.

Federico Heras, Javier Larrosa, and Albert Oliveras.
MiniMaxSAT: An efficient weighted Max-SAT solver.
Journal of Artificial Intelligence Research, 31(1):1–32, 2008.

Stefan Heinz and Martin Sachenbacher.
Using model counting to find optimal distinguishing tests.
In Integration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems, pages 117–131. Springer-Verlag, 2009.

Jinbo Huang.
The effect of restarts on the efficiency of clause learning.
In Manuela Veloso, editor, Proceedings of the 20th International Joint Conference on
Artificial Intelligence, pages 2318–2323. AAAI Press, 2007.



SAT in AI

Introduction

SAT

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

References IX

Hans Kleine Büning, Marek Karpinski, and Andreas Flögel.
Resolution for quantified Boolean formulas.
Information and Computation, 117:12–18, 1995.

Kalev Kask and Rina Dechter.
Stochastic local search for Bayesian networks.
In Seventh International Workshop on Artificial Intelligence and Statistics. Morgan
Kaufmann Publishers, 1999.

Victor Khomenko, Maciej Koutny, and Alex Yakovlev.
Logic synthesis for asynchronous circuits based on petri net unfoldings and incremental
sat.
In Application of Concurrency to System Design, 2004. ACSD 2004. Proceedings.
Fourth International Conference on, pages 16–25. IEEE, 2004.

Andreas Kuehlmann, Viresh Paruthi, Florian Krohm, and Malay K. Ganai.
Robust boolean reasoning for equivalence checking and functional property verification.
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on,
21(12):1377–1394, 2002.

Henry Kautz and Bart Selman.
Planning as satisfiability.
In Bernd Neumann, editor, Proceedings of the 10th European Conference on Artificial
Intelligence, pages 359–363. John Wiley & Sons, 1992.



SAT in AI

Introduction

SAT

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

References X

Henry Kautz and Bart Selman.
Pushing the envelope: planning, propositional logic, and stochastic search.
In Proceedings of the 13th National Conference on Artificial Intelligence and the 8th
Innovative Applications of Artificial Intelligence Conference, pages 1194–1201. AAAI
Press, 1996.

Lukas Kroc, Ashish Sabharwal, and Bart Selman.
Leveraging belief propagation, backtrack search, and statistics for model counting.
Annals of Operations Research, 184(1):209–231, 2011.

Tracy Larrabee.
Test pattern generation using Boolean satisfiability.
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
11(1):4–15, 1992.

Antonio Lozano and José L. Balcázar.
The complexity of graph problems for succinctly represented graphs.
In Manfred Nagl, editor, Graph-Theoretic Concepts in Computer Science, 15th
International Workshop, WG’89, number 411 in Lecture Notes in Computer Science,
pages 277–286. Springer-Verlag, 1990.

T. Latvala, A. Biere, K. Heljanko, and T. Junttila.
Simple bounded LTL model-checking.
In Proceedings Intl. Conf. on Formal Methods in Computer-Aided Design, FMCAD’04,
pages 186–200, 2004.



SAT in AI

Introduction

SAT

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

References XI

Michael L. Littman.
Initial experiments in stochastic satisfiability.
In Proceedings of the 16th National Conference on Artificial Intelligence (AAAI-99) and
the 11th Conference on Innovative Applications of Artificial Intelligence (IAAI-99), pages
667–672. AAAI Press / The MIT Press, 1999.

Pey-Chang Lin and Sunil Khatri.
Application of Max-SAT-based ATPG to optimal cancer therapy design.
BMC Genomics, 13(Suppl 6):S5, 2012.

Chu Min Li, Felip Manyà, Nouredine Ould Mohamedou, and Jordi Planes.
Resolution-based lower bounds in MaxSAT.
Constraints, 15(4):456–484, 2010.

Michael L. Littman, Stephen M. Majercik, and Toniann Pitassi.
Stochastic Boolean satisfiability.
Journal of Automated Reasoning, 27(3):251–296, 2001.

Inês Lynce and João Marques-Silva.
Efficient haplotype inference with boolean satisfiability.
In Proceedings of the 21th National Conference on Artificial Intelligence (AAAI-2006),
pages 104–109. AAAI Press, 2006.



SAT in AI

Introduction

SAT

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

References XII

Antonio Lozano.
NP-hardness of succinct representations of graphs.
Bulletin of the European Association for Theoretical Computer Science, 35:158–163,
June 1988.

Stephen M. Majercik and Byron Boots.
DC-SSAt: a divide-and-conquer approach to solving stochastic satisfiability problems
efficiently.
In Proceedings of the 20th National Conference on Artificial Intelligence (AAAI-2005),
pages 416–422. AAAI Press / The MIT Press, 2005.

Stephen M. Majercik and Michael L. Littman.
MAXPLAN: A new approach to probabilistic planning.
In Reid Simmons, Manuela Veloso, and Stephen Smith, editors, Proceedings of the
Fourth International Conference on Artificial Intelligence Planning Systems, pages
86–93, Pittsburgh, Pennsylvania, 1998.

Stephen M. Majercik and Michael L. Littman.
Contingent planning under uncertainty via stochastic satisfiability.
Artificial Intelligence, 147(1-2):119–162, 2003.

Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.
Chaff: engineering an efficient SAT solver.
In Proceedings of the 38th ACM/IEEE Design Automation Conference (DAC’01), pages
530–535. ACM Press, 2001.



SAT in AI

Introduction

SAT

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

References XIII

Joäo P. Marques-Silva and Karem A. Sakallah.
Conflict analysis in search algorithms for propositional satisfiability.
In Proceedings of the IEEE International Conference on Tools with Artificial Intelligence,
pages 467–469, 1996.

Christos H. Papadimitriou.
Games against nature.
Journal for Computer and System Sciences, 31:288–301, 1985.

James D. Park.
Using weighted max-sat engines to solve mpe.
In Proceedings of the 18th National Conference on Artificial Intelligence (AAAI-2002)
and the 14th Conference on Innovative Applications of Artificial Intelligence (IAAI-2002),
pages 682–687. AAAI Press / The MIT Press, 2002.

James .D. Park and Adnan Darwiche.
Complexity results and approximation strategies for map explanations.
Journal of Artificial Intelligence Research, 21(1):101–133, 2004.

K. Pipatsrisawat and A. Darwiche.
On the power of clause-learning SAT solvers with restarts.
In I. P. Gent, editor, Proceedings of the 15th International Conference on Principles and
Practice of Constraint Programming, CP 2009, number 5732 in Lecture Notes in
Computer Science, pages 654–668. Springer-Verlag, 2009.



SAT in AI

Introduction

SAT

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

References XIV

Knot Pipatsrisawat and Adnan Darwiche.
A new d-DNNF-based bound computation algorithm for functional E-MAJSAT.
In Proceedings of the 21st International Joint Conference on Artificial Intelligence,
pages 590–595. Morgan Kaufmann Publishers, 2009.

J. Pearl.
Probabilistic semantics for nonmonotonic reasoning: a survey.
In R. J. Brachman, H. J. Levesque, and R. Reiter, editors, Principles of Knowledge
Representation and Reasoning: Proceedings of the First International Conference (KR
’89), pages 505–516. Morgan Kaufmann Publishers, 1989.
Reprinted in Readings in Uncertain Reasoning, G. Shafer and J. Pearl (eds.), Morgan
Kaufmann Publishers, San Francisco, California, 1990, pp. 699–710.

Nathan Robinson, Charles Gretton, Duc-Nghia Pham, and Abdul Sattar.
Partial weighted MaxSAT for optimal planning.
In Byoung-Tak Zhang and Mehmet A. Orgun, editors, PRICAI 2010: Trends in Artificial
Intelligence, volume 6230 of Lecture Notes in Computer Science, pages 231–243.
Springer-Verlag, 2010.

Masood Feyzbakhsh Rankooh and Gholamreza Ghassem-Sani.
New encoding methods for sat-based temporal planning.
In ICAPS 2013. Proceedings of the Twenty-Third International Conference on
Automated Planning and Scheduling, 2013.



SAT in AI

Introduction

SAT

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

References XV

Jussi Rintanen, Keijo Heljanko, and Ilkka Niemelä.
Planning as satisfiability: parallel plans and algorithms for plan search.
Artificial Intelligence, 170(12-13):1031–1080, 2006.

Jussi Rintanen.
Evaluation strategies for planning as satisfiability.
In Ramon López de Mántaras and Lorenza Saitta, editors, ECAI 2004. Proceedings of
the 16th European Conference on Artificial Intelligence, pages 682–687. IOS Press,
2004.

Jussi Rintanen.
Heuristics for planning with SAT.
In David Cohen, editor, Principles and Practice of Constraint Programming - CP 2010,
16th International Conference, CP 2010, St. Andrews, Scotland, September 2010,
Proceedings., number 6308 in Lecture Notes in Computer Science, pages 414–428.
Springer-Verlag, 2010.

Jussi Rintanen.
Engineering efficient planners with SAT.
In ECAI 2012. Proceedings of the 20th European Conference on Artificial Intelligence,
pages 684–689. IOS Press, 2012.

Jussi Rintanen.
Planning as satisfiability: heuristics.
Artificial Intelligence, 193:45–86, 2012.



SAT in AI

Introduction

SAT

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

References XVI

Tian Sang, Fahiem Bacchus, Paul Beame, Henry Kautz, and Toniann Pitassi.
Combining component caching and clause learning for effective model counting.
In Theory and Applications of Satisfiability Testing, 7th International Conference, SAT
2004, Vancouver, BC, Canada, May 10-13, 2004, Revised Selected Papers, 2004.

Tian Sang, Paul Beame, and Henry Kautz.
Heuristics for fast exact model counting.
In Proceedings of the 8th International Conference on Theory and Applications of
Satisfiability Testing (SAT-2005), pages 226–240. Springer-Verlag, 2005.

Tian Sang, Paul Beame, and Henry Kautz.
Performing Bayesian inference by weighted model counting.
In Proceedings of the 20th National Conference on Artificial Intelligence (AAAI-2005),
pages 475–482. AAAI Press / The MIT Press, 2005.

Ji-Ae Shin and Ernest Davis.
Processes and continuous change in a SAT-based planner.
Artificial Intelligence, 166(1):194–253, 2005.

Carsten Sinz.
Towards an optimal cnf encoding of boolean cardinality constraints.
In Proceedings of the 11th International Conference on Principles and Practice of
Constraint Programming, Sitges, Spain, October 2005., pages 827–831.
Springer-Verlag, 2005.



SAT in AI

Introduction

SAT

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

References XVII

Matthew Streeter and Stephen F. Smith.
Using decision procedures efficiently for optimization.
In ICAPS 2007. Proceedings of the Seventeenth International Conference on
Automated Planning and Scheduling, pages 312–319. AAAI Press, 2007.

Roberto Sebastiani and Silvia Tomasi.
Optimization in SMT with LA(Q) cost functions.
In Bernhard Gramlich, Dale Miller, and Uli Sattler, editors, Automated Reasoning,
volume 7364 of Lecture Notes in Computer Science, pages 484–498. Springer-Verlag,
2012.

L. J. Stockmeyer.
The polynomial-time hierarchy.
Theoretical Computer Science, 3(1):1–22, 1976.

Alexander Smith, Andreas Veneris, Moayad Fahim Ali, and Anastasios Viglas.
Fault diagnosis and logic debugging using Boolean satisfiability.
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 24(10),
2005.

Tino Teige, Andreas Eggers, and Martin Fränzle.
Constraint-based analysis of concurrent probabilistic hybrid systems: An application to
networked automation systems.
Nonlinear Analysis: Hybrid Systems, 5(2):343–366, 2011.



SAT in AI

Introduction

SAT

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

References XVIII

Tino Teige and Martin Fränzle.
Resolution for stochastic boolean satisfiability.
In Logic for Programming, Artificial Intelligence, and Reasoning, pages 625–639.
Springer-Verlag, 2010.

Tino Teige and Martin Fränzle.
Generalized Craig interpolation for stochastic Boolean satisfiability problems.
In Tools and Algorithms for the Construction and Analysis of Systems, number 6605 in
Lecture Notes in Computer Science, pages 158–172. Springer-Verlag, 2011.

Leslie G. Valiant.
The complexity of enumeration and reliability problems.
SIAM Journal on Computing, 8(3):410–421, 1979.

Robert Wille, Daniel Große, D. Michael Miller, and Rolf Drechsler.
Equivalence checking of reversible circuits.
In Multiple-Valued Logic, 2009. ISMVL’09. 39th International Symposium on, pages
324–330. IEEE, 2009.

Steven A. Wolfman and Daniel S. Weld.
The LPSAT engine & its application to resource planning.
In Thomas Dean, editor, Proceedings of the 16th International Joint Conference on
Artificial Intelligence, pages 310–315. Morgan Kaufmann Publishers, 1999.



SAT in AI

Introduction

SAT

MAXSAT

#SAT

SSAT

SMT

Conclusion

References

References XIX

Emmanuel Zarpas.
Simple yet efficient improvements of SAT based bounded model checking.
In Alan J. Hu and Andrew K. Martin, editors, Formal Methods in Computer-Aided
Design: 5th International Conference, FMCAD 2004, Austin, Texas, USA, November
15-17, 2004. Proceedings, number 3312 in Lecture Notes in Computer Science, pages
174–185. Springer-Verlag, 2004.


	Introduction
	SAT
	NP-completeness
	Phase transitions
	Resolution
	Unit Propagation
	Davis-Putnam
	Restarts
	SAT application: reachability

	MAXSAT
	Algorithms
	Applications
	Application: MPE
	Application: Structure Learning

	#SAT
	Algorithms
	Application: Probabilistic Inference

	SSAT
	Algorithms
	SSAT applications

	SMT
	Algorithms
	Application: Timed Systems

	Conclusion
	References

