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e http://www-
staff.it.uts.edu.au/~lbcao/publication/behavio
r-informatics-tutorial-slidesx.pdf

e http://www-
staff.it.uts.edu.au/~lbcao/publication/publicat
ions.htm

e www.behaviorinformatics.org
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e | appreciate all of my team members who
have made contributions to this slide. The
team member names can be found from the
references.

 Appreciate Ms Can Wang’s great efforts in
creating many of the slides.
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Why Behavior Informatics & Co

What is

What is Behavior Informatics & C

Related Work

Behavior Model

High Impact Beha




pact-oriented Combin_

Negative Behavior Analys-
Challenges and Prospects of C

Behavior Computing B AAG
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Behavior Informatics: Overview

Longbing Cao, In-depth Behavior Understanding and Use:
the Behavior Informatics Approach, Information Science,
180(17); 3067-3085, 2010.

Can Wang, and Longbing Cao.Modeling and Analysis of

Social Activity Process, in Longbing Cao and Philip S Yu (eds)
Behavior Computing, 21-35, Springer, 2012

UTS: A Ai
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i
( Behavior-oriented Decision-making )
( Behavior Presentation )
A A
N N\
— N N N
o
(Behavior Reasoning) Measurement & Evaluation g
So 5=
S 8¢ Behavior g) G Behavior )Q\n Behawor ) Behavior Q '% o3
& 5 3 \Model Checkin attern Analy5|s omaly Analysis / \l[mpact Analysn &2
g’ @ § Beh N\ =
ol ehavior .C ) C ) ©
&, o Repres;ntation 5 \ Behavioral Data Source Data o
S C Behavior-relevant Applications & Areas )

http://www.b

ehaviorinformatics.org/

BEHAVIOR INFORMATICS

...Discovering Behavior Intelligence




) Mozilla Firefox

Eile Edit View

A

History Bookmarks Tools Help
http:,‘/www.behavi...informatics.org_fi Se I =
€ > | i www behaviorinformatics.org c Pk
-~
BEHAVIOR AND SOCIAL INFORMATICS, IEEE TASIK FORCE
Discovering Behavior and Social Intelligence I
MAIN MENU Welcome to IEEE Task Force on Behavior and Social Informatics
= Home
= Calls for ...
= Introduction
* Research Topics Behavior Com puting:
= Activities Behavior Computing & = AR 5.3
sty Modeling., Analysis, Mining and Decision

= Projects
* Commuhites Longbing Cao, Philip S Yu (Eds.)
= Resources Springer, 2012
* References First dedicated source of references for the theory and applications of behavior informatics and behavior computing.
= About Us
= Contact Us
LINKS

News:
= Bl2012
- BI2011 * Tutorial: Behavior Computing: Complex Behavior Modeling, Analysis and Mining, VWI-IAT2012, 4 Dec 2012,
- BI2010 * 2012 Workshop on Behavior Informatics (BI2012) has been accepted by WI-IAT2012.
- AMILSIG * The first dedicated reference to behavior informatics: Behavior Computing is available in Springer.
= DDDM-SIG
= EDM-SIG o .
e pportunities:

[Call for books] : Calls for edited books, monographs and so on to the Book Series: Advanced Studies on Behavior Informatics.

[Call for papers]: Call for papers to the 2012 International Workshop on Behavior Informatics (B812012).
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1. Why Behavior
Informatics & Computing?

Longbing Cao, In-depth Behavior Understanding and Use: the Behavior Informatics Approach, Information Science,
180(17); 3067-3085, 2010.

'S
www.behaviorinformatics.org UTS:AAi
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e Behavior is an important analysis object in

Consumer analysis
Marketing strategy design
Business intelligence

— Customer relationship management

Social computing

Intrusion detection

Fraud detection

Event analysis

Risk analysis

Group decision-making, etc.

10

» Customer behavior analysis

» Consumer behavior and market strategy
»Web usage and user preference analysis

» Exceptional behavior analysis of terrorist and
criminals

»Trading pattern analysis of investors in capital
markets

UTS: A Ai
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e Example 1: Price movement as market behavior

—_— Dovy — SEPFP S00 ——— Nasdaqg
- +2.03%

+1 .02'°/’o
R
0.00%

WJ\‘W N

0' -2.03%

10:':1m 12Ipm Z2pm ® 4 pm

D ow 8.629.68 +64.59 (0.75%)
S&EP 500 879.73 +-6.14 (0.70°%)
Nasdaq 1.540.72 +32.84 (2.18%)
10y bond 2.57% +0.01 (0.39%%)

11

4

L

is the
behavior

exterior
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e Example 2: Announcement as market
behavior driver

Price Price g SN \

A A

driver of
behavior exterior

(price)

1
.
1
.
]
.
1
.
1
.
]
1
.
1
.
1
.
1
-
-
1
.
1
.
1

-...
| e e
Predisclosur¢ Tureg point Predisclosure Turning point
session i session |
1 ]
& » Time * » Time
Announcement Announcement
release time release time
(a) (b)
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Price

12

11.5

11

10.5

_/ / §
onnection

between
interior driver

? | and behavior
i exterior

Aﬁ @ Turning points

A ) s

| | that are relating
| to announcments

| |

’lmh""‘_ ‘ Announcement B

| <

k ; Announcement A

‘ | ‘ | | | |

500 1000 1500 2000 2500
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 Why does this stock go so crazily?

Price
125.83

3.26

UTS:AAi
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* Short-term manipulation behavior as cause

Price ) )
125.83 l Behavior ex‘Fenor
: presentation
|
|
|
|
|
|
|
|
|
3.26 !
|
|

Vol

Behavior
interior
driver
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e Associated

accounts
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Price

125.83

3.26

Vol

Group behavior-driven
price movement

13:51 15:00 9:30 9:45
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 Empirical, qualitative, psychological, social etc

e Behavior-oriented analysis was usually conducted on
customer demographic and transactional data
directly

— Telecom churn analysis, customer demographic data and service usage
data are analyzed to classify customers into loyal and non-loyal groups
based on the dynamics of usage change

— OQutlier mining of trading behavior, price movement is usually focused
to detect abnormal behavior

so-called behavior-oriented analysis is actually not on customer
behavior-oriented elements, rather on straightforward customer
demographic data and business usage related appearance

(tramsactions) fﬁ‘S H AAi

THE ADVANCED ANALYTICS INSTITUTE



e Customer demographic and transactional data is not
organized in terms of behavior but entity
relationships

e Human behavior is implicit in normal transactional
data: behavior implication

e cannot support in-depth analysis on behavior interior: focus on
behavior exterior

e Cannot scrutinize behavioral actor’s belief, desire, intention and
impact on business appearance and problems

Such behavior implication indicates the limitation or even

ineffectiveness of supporting behavior-oriented analysis on
transactional data directly.

21 UTS:AAi
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e Behavior plays the role as internal driving forces or causes for
business appearance and problems

e Complement traditional pattern analysis solely relying on
demographic and transactional data

e Disclose extra information and relationship between behavior
and target business problem-solving

A multiple-dimensional viewpoint and solution may
exist that can uncover problem-solving evidence from
not only demographic and transactional but behavioral
(including intentional, social, interactive and impact
aspects) perspectives

22 UTS:AAi
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 Make behavior ‘explicit” by squeezing out behavior
elements hidden in transactional data

* A conversion from transactional space to behavior
feature space is necessary

e Behavioral data:

* behavior modeling and mapping
e organized in terms of behavior, behavior relationship and impact

Explicitly and more effectively analyze behavior
patterns and behavior impacts than on transactional
data

23 UTS:AAi
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2. What is Behavior?
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e An abstract behavior model

Demographics and
circumstances of behavioral
subjects and objects

Associates of a behavior may
form into certain behavior
sequences or network;

Social behavioral network
consists of sequences of
behaviors that are organized in
terms of certain social
relationships or norms.

Impact, costs, risk and trust of
behavior/behavior network

26

[ l ™~
Subject ¥ Goal
Demographic |, (Bohavior 1)
1 Subject
Object :
Impact || Golal Belief
Object l¢ Belief .
— Action
Plan .
Time Time Action
Place
Behavior 2 )€— Status
Context [—
| | | Place r Constraint Plan
| | Impact
| | !
'—)( Behavior - .
S Status [«—>| Context Constraint
Behavior- Attribute Behavior-
— behavior - — atiribute —p
relationship relationship
- J

Figure 1. An Abstract Behavioral Model

UTS: A Ai
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Definition 1. A behavior (B) is described as a four-ingredient t

(8,0,€,R),

iple B =I

o Actor & = (SE,0F) is the entity that issues a behavior (subject, SE) or

on which a behavior is imposed (object, OE ).

Operation € = (OA,SA) is what an actor conducts in order to achieve
certain goals; both objective (OA) and subjective (SA) attributes are as-
sociated with an operation. Objective attributes may include time, place,
status and restraint; while subjective aspects may refer to action and its
actor’s belief and goal etc of the behavior and the behavior impact on busi-
ness.

Context € is the environment in which a behavior takes place.

Relationship Z = (0(-),n(-)) is a tuple which reveals complex interactions
within an actor’s behaviors (named intra-coupled behaviors, represented
by function 6(-)) and that between multiple behaviors of different actors
(inter-coupled behaviors by relationship function n(-)).



e Behavior instance: behavior vector

¥={s,0.¢e,9.bal f.ct wum}
— basic properties
— social and organizational factors

e Vector-based behavior sequences

—
— _—

['= {41.72, ..., Tn }

e \ector-oriented patterns

28 UTS:AAE
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 Vector-oriented behavior pattern analysis
— Behavior performer:
e Subject (s), action (a), time (t), place (w)
— Social information:
* Object (0), context (e), constraints (c), associations (m)
— Intentional information:
e Subject’s: goal (g), belief (b), plan (/)
— Behavior performance:
e Impact (f), status (u)

» New methods for vector-based behavior pattern analysis

29 UTS:AAE
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 Behavioral elements hidden or dispersed in
transactional data

e behavioral feature space

Entity-Oriented
Transactional

Behavior Feature
-Oriented Space

Behavioral
Modeling

» Behavioral data modeling | |+ -~ R
» Behavioral feature space _
> Mapping from transactional to beha_'""sactional Data Behavioral Data )
» Behavioral data processing

» Behavioral data transformation

30 UTS:AAi
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3. Whatiis
Behavior Informatics and
Computing?

Longbing Cao, In-depth Behavior Understanding and Use: the Behavior Informatics Approach, Information Science,
180(17); 3067-3085, 2010.

¢
www.behaviorinformatics.org UTS:AAi
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sentation

ehavior-oriented Decision-making

5

Behavior Presentation

Measurement &

Behavior Behavi
attern Analysis omal

Behavioral Data )

ehavior-relevant Applications & Areas

Behavior
Learning & Mining

TS:AAi

THE ADVANCED ANALYTICS INSTITUTE



Behavior
Modeling

Develop
modeling and
representation

~N

methods to capture

behavior

characteristics and

\-

dynamics.

Behavior
Analysis

4 )

Propose effective
techniques and
tools for emergent
areas and domains
in analyzing
behaviors.

v

\_ /

Behavior
Mining

.. )

dentify patterns in
behavior entities
and networks, such
as detection,
prediction and
prevention of

Kcritical behavior.)
UTS:AAS
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Behavior Modeling Structure

Economics
Mathematics
Engineering
Information

Semantics
Formalization

Specific Abstract
Methodologies <,‘:> Representations

Knowle TT ) Behavioristics
B [

- EH N RN RFam

2 O 1 3 / 4 / 1 6 THE ADVANCED ANALYTICS INSTITUTE




Formal
Behavior Techniques
Modeling

Real-world
Entities

. " ‘
¥
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e (Behavior modeling)
— describing behavioral elements

— extracting syntactic and semantic relationships amongst
the elements

— presentation and construction of behavioral sequences
and properties

— unified mechanism for describing and presenting
behavioral elements, properties, behavioral impact and
patterns

36 UTS:AAi
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Behavior
Analysis
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Behavior
Mining

<

Understand®
Behg

Investigate
N Pz

e

—

Structures

Semantics
Dynamics

Fraud Detection

Prediction and
Prevention

Activity Mining

UTS: A Ai
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 Behavioral instances that are associated with
high impact on business processes and/or
outcomes

* Modeling of behavioral impact

»Behavior impact analysis

»Behavioral measurement

» Organizational/social impact analysis

» Risk, cost and trust analysis

»Scenario analysis

» Cause-effect analysis

» Exception/outlier analysis and use

» Impact transfer patterns

» Opportunity analysis and use

» Detection, prediction, intervention and prevention

39 UTS:AAi

THE ADVANCED ANALYTICS INSTITUTE



 Behavioral patterns without the consideration
of behavioral impact

* Analyze the relationships between behavior
sequences and particular types of impact

VVVVYVYVVY

»Social networking behavior

» Linkage analysis

»Behavior clustering
»Behavior network analysis
»Behavior self-organization

» Exceptions and outlier mining

Emergent behavioral structures
Behavior semantic relationship
Dynamic behavior pattern analysis
Detection, prediction and prevention
Demographic-behavioral combined pattern analysis
Cross-source behavior analysis

Correlation analysis UTS.AAi
40 5
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ONoIrma
OoNorma

OoNorrma

behavior

+ normal behaviors
group behavior

UTS: A Ai
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Behavioral occurrences, evolution and life cycles

Impact of particular behavioral rules and patterns on
behavioral evolution and intelligence emergence

Define and model behavioral rules, protocols and
relationships, and

Their impact on behavioral evolution and intelligence
emergence

42 UTS : AAE

THE ADVANCED ANALYTICS INSTITUTE



e |Intrinsic mechanisms inside a network

e behavioral rules, interaction protocols, convergence
and divergence of associated behavioral itemsets

e effects such as network topological structures, linkage
relationships, and impact dynamics

e Community formation, pattern, dynamics and
evolution

- Intrinsic mechanisms inside a network

- Behavior network topological structures

- Convergence and divergence of associated behavior

- Hidden group and community formation and identification
- Linkage formation and identification

- Community behavior analysis A
43 UTS:AAi
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 Observe the dynamics,

e The impact of rules/protocols/patterns,
behavioral intelligence emergence, and

 The formation and dynamics of social
behavioral network

Large-scale behavior network

Behavior convergence and divergence
Behavior learning and adaptation

Group behavior formation and evolution
Behavior interaction and linkage
Artificial behavior system

Computational behavior system UTS.AAi
s

44 Multi-agent simulation
THE ADVANCED ANALYTICS INSTITUTE
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e presentation means and tools

— describe the motivation and the interest of
stakeholders on the particular behavioral data

— traditional behavior pattern presentation
—visual behavioral presentation

Rule-based behavior presentation

Flow visualization

Sequence visualization

Dynamic group formation

Visual behavior network

Behavior lifecycle visualization

Temporal-spatial relationship

Dynamic factor tuning, configuration and effect analysis
Behavior pattern emergence visualization

4Igistributed, linkage and collaborative visualization UTS.AAE
]

THE ADVANCED ANALYTICS INSTITUTE
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Modeling

—

@0

Behawnoral
Lala

#([)

Business
Appbcshions <

B

Busin=ss
Rules

il

Faiizrn Analysis
&)

Tropact ._‘ma]ysis
_ D)

Hehaaon

o Fresentabion

BIA: w(DB) 28 [ Pecll phechiO B

46

BIA PROCESS: The Process of Behavior Informatics and Ana-
lytics
INPUT: original dataset ¥:
OUTPUT: behavior patterns P and operationalizable  business
rules .
Step 1: Behavior modeling ©(T):

Given dataset 1,

Develop behavior modeling method & (@ € 6) with

technical interestingness ¢,( )

Employ method @ on the dataset ;

Construct behavior vector set I
Step 2: Converting to behavioral data $(1').

Given behavior modcling method &,

FOR j = 1 to(count(¥))

Deploy behavior modeling method @ on dataset ;
Construct behavior vector 5:

ENDFOR

Construct behavior dataset $(T):
Step 3: Analyzing behavioral pattems PT'

Given behavior data ($(T°):

Design pattern mining method w € €2:

Employ the method w on dataset $1'

Extract behavior pattern set P:
Step +4: Converting behavior pattems P operationalizable
business rules K;

Given behavior pattern set ;

Develop behavior modeling method A:

Involve business interestingness b,() and constraints ¢ in the
environment €:

Generate business rules R

UTS:AAI
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4. Related Work

Ae
| " i
n
THE ADVANCED ANALYTICS INSTITUTE



[ Behavior Modeling Structure ]

Economics
Mathematics
Engineering

Syntax
Semantics
Formalization

Specific <:> Abstract

Information Methodologies Representations

TT Behavioristic
s, Do {

Ak
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Several have been abstracted:

- belief-desire-intention model

- situation calculus

- human-machine interaction

- reasoning about action

- behavior composition

- action recognition and simulation

- action coordination and planning

- modeling systems rather than behaviors

o UTS: A Ai
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Several have been proposed:

- user behavior modeling

- activity monitoring

- customer and consumer behavior analysis
- ontological engineering and semantic web
- sequence analysis

- reality mining

- activity mining

- multivariate time series

- coupled hidden Markov model

UTS: A Ai
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* Qualitative Reasoning and Verification

With the formal representation of coupled behaviors, the
gualitative analytics to address the task of behavior
reasoning and verification is in great demand.

* Quantitative Leaning and Evaluation

The quantitative research to target behavior learning
and evaluation must be focused on.

* Integrated Understanding of Behavior Algebra

An appropriate way could be chosen to integrate
these two studies to obtain an integrated UTS: AA;
understanding of the implicit complex behaviorsemn o aats il



Formal
Explicit Mo
Unified

Advantage
Limi >

UTS: A Ai
] 9 i
|
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5. Behavior Modeling
and Representation
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UTS/AAI Technique Report 2011

Formalization and Verification of
Group Behavior Interactions

Can Wang, Longbing Cao

University of Technology, Sydney, Australia

- . Q
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™
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Behavior Behavior
Descriptor Aggregator Yes

Checker
Refiner Exporter

Behavior Constraint
Indicator
(Natural — Logic)

Ontology-based Behavior Modeling and Checking
UTS:AAi

THE ADVANCED ANALYTICS INSTITUTE

Behavior Behavior Behavior
Model Model




e Actor: refers to the subject(s) or object(s) of a behavior, for
example, organizations, departments, systems, agents and people
involved in an activity or activity sequence.

» Operation: represents activities, actions or events in a behavior
or behavior sequence.

e Coupling: refers to the interaction between behaviors, including
connections between actors and/or operations of either one or
multiple actors.

Behavior

<D Ceomin D UTS:AA;
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/ Actor Sub-model

S
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~

Associate

Action Sub-model
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K Environment Sub-model
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Action
name
Initiative action A enables B or - split or - join Block
Action
name
Action A disenables B and - split and - join Sub-action
Relationship | enable | disenable or-split and-split or-join and-join

LogicForm | a—b | w(a—b) | a—(bve) | a=(bac) | (avb)—>c | (anb)—>c

. ,"\
21/6/2010 L. Cao UTS:AAi
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Coupling Relationships

Temporal

~ Serial Coupling

Parallel coupling
- Synchronous relationship

Asynchronous coupling
Interleaving
Shared-variable

Channel system

Perspectives

Inferential

~ Causal Coupling
Conjunction Coupling

Disjunction Coupling

_ Exclusive Coupling

Party-based

~ One-Party-
Multiple-Operation

Multiple-Party-
One-Operation

Multiple-Party-

_ Multiple-Operation

UTS: A Ai
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* Serial coupling, denoted by {B;;B,}, showing the
situation in which behavior B, follows behavior B,.

* Parallel coupling, by which behaviors happen in
varying concurrent manners, including synchronous
coupling and asynchronous coupling.

— Synchronous relationship, denoted by {B,|B,},
indicating that B1 and B2 present at the same time
based on certain communication protocols.

- . Q
[} : i
™
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— Asynchronous coupling, showing that two behaviors

B, and B, interact with each other at different time points.

* Interleaving, denoted by {B, : B,}, representing the
involvement of independent complex behaviors by
nondeterministic choice (independently).

* Shared-variable, denoted by {B, | | | B}, signifying that
the relevant behaviors have variables in common.

*+ Channel system, denoted by {B, | B.}, is a parallel system
in which complex behaviors communicate via a channel, for
instance, first-in and first-out buffers. UTS:AA:



e Causal coupling, represented as {B; - B,}, meaning

that behavior B, causes behavior B,.

e Conjunction coupling, {B, A B,}, specifying that

B, and B, take place together. J

* Disjunction coupling, {B, V B,}, by which at least one
of the associated behaviors must happen. ﬁ

e Exclusive coupling, {B, @ B,}, indicating that if B,
happens, B, will not happen, and vice versa.

- . Q
[} : i
™
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* One-Party-Multiple-Operation, represented as
{(B,,B,)"}, depicts that distinct behaviors B, and B,
are performed by the same actor A,.

e Multiple-Party-One-Operation, shown as {(B,)~4:]},
represents that multiple actors A; and A, implement
the same behavior B, to achieve their own intentions.

* Multiple-Party-Multiple-Operation, presented as
{(B,,B,)A#1} describes that different behaviors B,
and B, are carried out by distinct actors A; and A,.

- . Q
[} : i
™
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¢ ’
=]

Definition 1 (Behavior): A behavior B is described as a
three-ingredient tuple B = (&7, &, %€’), where:

e Actor &7 is the entity that issues a behavior or on which
a behavior 1s imposed.

e Operation ¢ is what an actor conducts in order to achieve
certain goals.

e Coupling ¢ =< 6(-).n(-) > is a tuple that reveals
complex interactions including intra-coupling (¢(-)) and
inter-coupling (7)(-)).

For instance, in a stock market, a behavior can be represented as “an
investor places a buy order”. The involved actor is the “investor” himself
or herseltf, the operation is the transaction of “buy”. The third component

coupling exposes the intra-relationship between this behavior and this
investor's sell order on the other day, together with the inter-relationship
between this behavior and another investor’s buy order on the same day.




We tackle the coupled behaviors from either one or
different actors, denoted as intra-coupling and inter-
coupling, respectively.

Behavior Feature Matrix

O | O ... Oy intra-coupling

Oy | Oy ... Obj .
FM(B) =

\G11 |62 ... 615 )

inter-coupling

UTS: A Ai
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The intra-coupling reveals the complex couplings within an actor’s

distinct behaviors.

» . . oS For instance, in
Definition 2 (Intra-Coupled Behaviors): Actor <7;’s behav- thie Stock market the

iors B;; (1 < j < Jnae) are intra-coupled in terms of

. . investor will place a
coupling function 60;(IB).

sell order at some
;. time after buying his
B ::=B;.(«,0.0)| Z 0;(B) ® B, WH)J  Or herdesired
instrument due to a
great rise in the
where Z;’__"f"' ® means the subsequent behavior of B; is B;; RItIetiatfelsRuNTERER

intra-coupled with ¢;(B), and so on. to some extent, one
way to express how

these two behaviors
are intra-coupled
with each other.

i=1

THE ADVANCED ANALYTICS INSTITUTE



The inter-coupling embodies the way multiple behaviors of different
actors interact. For instance, a

Definition 3 (Inter-Coupled Behaviors): Actor <7;’s behav- Fistebiatadstisielsik
iors B;; (1 < i < I) are inter-coupled with each other in RSBt ERRINAel%

terms of coupling function 7);(B), when an investor
sells the
P W | ! | ) instrum(.ent at the
]B-j =B.j (. 0,n) Z n:(B) © Bij. (IV.3) same price as the
i=1

other investor

buys this
instrument. This is
another example
of how to trigger
Boy | B22 ... Boy,.. the interactions
: between inter-
coupled behaviors.

where Zf © means the subsequent behavior of B; is B;; inter-
coupled with 7);(B), and so on.




In practice, behaviors may interact with one another in both ways
of intra-coupling and inter-coupling.

Definition 4 (Coupled Behaviors): Coupled behaviors B,
refer to behaviors B; ;, and B;,;, that are coupled in terms
of relationships h(6(B),n(B)), where (i1 # i2) V (j1 #
.]2)/\(1 S 'i'l-.'i'Q S I)/\(l S jlﬁj? < Jma:r:)

For instance, we
consider both the
successful trading
between investor

A, (buy) and
; , Imaz investor A, (sell),
B, = (BY )"+ (BS,,)" :=Byj(#,0,%) 5‘ DM nd then the selling
i1,i2=1 j1,j2=1 behavior

h(0;,5, (B), 1,5, (B)) © (Biy 5, Biyjs) (W2 conducted by A,
after he or she has
bought the
instrument at a

where h(0;, j,(B).n:,:,(B)) is the coupling function de-
noting the correspondinc relationships between B;, ;, and

1, THEN Zzl ia=1 Z iy © means the subsequent behaviors

of B are B;,;, coupled with h(0;, (B),n:, (B)), Biyj, with relative low price.

h(0;,(B),n;,(B)), and so on. UTS'AAE
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£

We conduct behavior aggregations to interpret the interactions
of intra-coupled and inter-coupled behaviors. The outcomes of
the behavior aggregations form the basis of behavior verification.

Three types of aggregations

Intra-Coupled Inter-Coupled Combined
Aggregation Aggregation Aggregation

function 0; function 7 function (0,5, 1i,i.)

UTS: A Ai
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For the behaviors conducted by the same actor, we
interpret the behavior dynamics in terms of a transition

system (TS).
TS: Directed Graphs

Nodes: System States Edges: Model Transitions

A state describes the
behavior status at a
certain moment of

system dynamics.

State changes

of a system.

UTS: A Ai
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In particular, the TS interpretation of the intra-coupled
behaviors B! for actor < is the tuple (St; Act;—>; In),
where ?; is the intra-coupling function.

e St={60;(B)} is a set of states.

e Act ={0} is a set of actions or operations.
o 0;(B) 2, ¢;+1(1B) 1s a transition relation.

e In={6p(B)} is a set of initial states.

THE ADVANCED ANALYTICS INSTITUTE



Apart from the intra-coupled behaviors, inter-coupling B”
refers to interactions between operations by different actors.

Definition 5 (Inter-coupling Operators): The behavior
inter-couplings are essentially the various interactions among
multiple behaviors. Let By and B be two behaviors, then the
inter-coupling function 7);(B) is defined as:

17;(B) :=B1:By | By||B2 | By : Bo | By|||B2 | B1|B2 | By —
Bo| By ABy | By VBsy | By @By | f(B)]. (V1)

= B
UTS:AAi
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With the intra-coupled and inter-coupled interactions

defined, we develop the combined aggregation of coupled
behaviors to model complex behavior-oriented applications.

1 2 3

_/

20512 (B), Miaia (B) UTS:AA;
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Second, interaction rules (IR) are induced to support
appropriate combinational reduction of multiple coupling
relationships.

Definition 6 (Interaction Rule): An interaction rule

f(By,--- ,Bn)

(V.3)

IR :Byx---xB, —
! Q(B].' -]BTL)

1s the combinational equivalence and reduction about the
coupling relationships among behaviors B, (1 < i < n), where
f(-) and g(-) are two coupling expressions for the involved
behaviors

TS:AAi
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For instance, four interaction rules are induced as follows
(where *; *1; %2 are the coupling operators):

B (By *Bo) x B3
IRy By * (B2 xB3)

B1 x1 Ba) xo (B3 x1 Ba)

(
IHe: (B1 %2 B3) *1 Bo

IR - (By % Bo) x (By x B3)
3 B * By x By ’

IR, - (By *1 Ba) *o (By *1 B3)
T By #p (Bg %2 Bg)

i | UTS:AA;
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Finally, concurrent transition systems (TSs) are constructed
to specify complex interactions by utilizing temporal,
inferential, and party-based couplings to describe, combine
and aggregate the coupling relationships.

The relationships among TSs are concerned since complex
behaviors are represented as TSs. Assume that there
are n complex behaviors (TSs) associated with one another
in terms of different coupling relationships.

UTS: A Ai
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Serial Coupling: T'S1:T'Sy:---: TS,

Synchronous Coupling: T'Sy || TSy || -+ || T'S,
Interleaving Coupling: 1T'Sy : 1Sy : ---: TS,
Shared-variable Coupling: T'Sy|||T' Sall||- - - |||T°S,
Channel System Coupling: T'S1 | T'Sa | ---| TS,

Causal Coupling: T'S1 — T'Ss

Conjunction Coupling: T'S1 N'T'S2

Disjunction Coupling: T'S1 V T'Ss

Exclusive Coupling: T'S1 & TS

Hierarchical Coupling: f(g(1'S1.TSs,---.T5S,))
Hybrid Coupling: f(1'5S1).g(1S2), f(1T'S1)*. (1'S1)“
OPMO Coupling: f(T'S1.TSs.---, TS,)A1]

MPOO Coupling: f(TSy)ArA2An]

MPMO Coupling: f(TS1,TSs, --- ., TS,)ArA2An]

UTS: A Ai
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Input
Behavior
Application

)
Semantics

Semantics

Intra-coupled
Aggregation

Extract
Behavior
Ontology

Behavior

. Aggregator )

Syntax \

Output
Behavior Refiner
& Exporter

Behavior
N Descriptor

Verify
Behavior
Checker

Semantics

Inter-coupled
Aggregation

—— | — 1/

Obtain
Combined
Aggregation

Formalize
Behavior
Constraints
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In order to improve the quality of the behavior model, a simulation can
be conducted prior to the behavior checking. For verification purposes,
the behavior model under consideration needs to be accompanied by a
relevant constraint specification that is to be verified.

Constraints, i.e., prior simulations, can be used effectively to get rid of
the simpler categories of modeling errors. To make a rigorous verification
possible, constraints should be described in a precise and unambiguous
manner. This is done through a constraint specification language.

For instance, a business constraint in stock markets is

that investors are not allowed to make transactions after
trading hours.

A
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We take advantage of the propositional logic and temporal
logic to express the constraints of the desired model.

synchronous and asynchronous behavior couplings

Y ([

T

UTS: A Ai
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Predefined Ontology
Axiom to be Satisfied

Inferential Reasoning:
Causal, Conjunction,
Disjunction, Exclusive

Feature of Desired
Pattern

UTS:AAi
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Different types of formal verification:

Manual Proof of Mathematical Arguments
- Time-consuming
- Error-prone
- Often not economically viable

Interactive Computer Aided Theorem Proof
- Require significant expert knowledge

Automated Model Checking
An automated technique that, given a finite-state model
of a system and a formal property, can systematically

check whether or not this property holds for that model.

It not, model checkers can help to identify the input
sequence that triggers the failure.
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Behavior-
oriented
Application

Constraints
to be verified

Combination
of Categories

-

Transition System ] [ LTL formulae ]
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—b[ Product Model }4—

Refine
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Reject product ID Advise bad ID
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+
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PO

Validate
product ID

Download
enc. product

Browse Choose
catalog product

\

/ I Send product |

Forward PO

A
Accept product ID
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Behavior Behavior
Descriptor Aggregator Yes

Checker
Refiner Exporter

Behavior Constraint
Indicator
(Natural — Logic)

Ontology-based Behavior Modeling and Checking
UTS:AAi
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Snapshot of the four-legged league in the Robocup soccer
competition: two teams participate in a Robocup soccer competition
with four Sony AIBO robots in each group.

[S:AAi
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A case-based multi-robot architecture with n robots and k retrievers:

_ Distributed Concurrent
msg retrieve @ Behaviors Actions
Robot RC ]6/.
msg msg Uncertain

Complex Features

msg Situations
[ Robot Ord 2 [ Robot Ord 4 ]
[ Robot Ord 3 ] Collaborated Nonstop
Strategies Operations

:AAi
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Transition system models T'S(B(RC})) and TS(B(Ord,))

Intra-coupled
Aggregation
(Ordy)

0,

UTS: A Ai
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Inter-coupled
Aggregation
(RC,Ords) (B(RC)|B(Ordsy)) : (B(RC)|B(Ords)) : (B(RC)|B(Ordy))

0

The syntax of coupled behaviors between retriever RC and players Ords:

B(R(v' ()7'(1.5‘) — (BQ(RC))U(RC,OrdS) " (Bg(Ords) )n(RC,Ords)
Combined
Aggregation
1,(RC,0rd) TSB(RC)H|(TS(B(Ordy)) : TS(B(Ords)) : TS(B(Ordy)))

UTS: A Ai
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Ontology Axiom

O(=(execute_attacklOrdi] A execute_blocklOmdl))

Inferential Coupling

O((TS(retrieve case)l“™AQT S (send msg)“Hl) —
O('TASI(."(J(‘-(.-,.,‘I.(_. msg)[Ordi] A OT;S'(('I(‘A‘)[OTd"]))

It is never the case that any Ord can
both implement the executions of
attack and block opponent players

Desired Constraint

CI( wait_endl©Ordil U T wait_endlOrds] )))

If the case is successfully retrieved by
CR, then eventually the message sent is
received and the acknowledgment
is sent by Ord.

Forbidden Constraint

DO(\/Z'(I.[)OI'T[Ordi] )

The execution of a case will not be
done until all Ords
have completed their actions.

Ord will infinitely often abort the
execution.

THE ADVANCED ANALYTICS INSTITUTE



SPIN is used to perform checking of the corresponding 7'S(B) and constraints.

Andt::
45

1lwait_end16

|Oxd: 2

1!

Oxd: 3

10
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- State 10: ackl©Ods] — wait_prepare

- State 18: send def msgfCl — wait msglOd4]

- State 34: send def msgf¢l = wait ms
g

- State 39: O(receive msglOrd2] — abort(Ordz])

(] [OT‘dg]

At State 39, the robot player
Ord2 aborts the execution
whenever it receives messages
from RC. Therefore, at State
45, Ord2 and RC wait for each
other, resulting in an infinite
wait loop while the executions
of other robots are interrupted
simultaneously, which is the
so-called deadlock. A typical
deadlock scenario occurs when
components mutually wait for
each other to progress.

- State 45: D(/\z-‘urn:it_(:-‘-"n(I[Ordi] A ur(z.-if_p'rt?pa'r(_-*[RC]) UTS: AA;

THE ADVANCED ANALYTICS INSTITUTE



After analyzing the deadlock scenario, we introduce an additional

state called “hold on” to break the loop.
When such a deadlock happens, the

- State 40: State 39— hold_on!O7%IVIERC] next state will be “hold on’, which
I means that the other two robot
10 players Ord, and Ord, will continue

their execution as usual. RC

continues to retrieve cases and send
messages without receiving ack from
Oxd:4 Ord, until the behaviors of Ord,
become normal. If this does not
7 occur, there must be design flaws in
Ord,, which should be explored by

robot experts. In fact, “State
a5 | 40” serves as a Behavior Model
Refiner.

Finally, a refined system (in addition with State 40) will be provided AAS
by the Behavior Model Exporter Hl?,,;ﬁéz



An additional state called "hold_on" to break the

loop.
Deadlock “hold_on

- Two robot players Ord3 and Ord4 will
continue their executions as usual.

- CR continues to retrieve cases and send
messages without receiving acknowledgment
from Ord1 until the behaviors of Ord1
become normal.

- Else, there must be some design flaws in
Ord1, which should be further explored by

robot experts. UTS:A A
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6. High Impact Behavior
Analysis

Longbing Cao. Zhao Y., Zhang, C. Mining Impact-Targeted Activity
Patterns in Imbalanced Data, /IEEE Trans. on Knowledge and Data
Engineering, 20(8): 1053-1066, 2008.
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Clrcumstance &

= dy 3
—pustomer &
I 1 ¥
Circumstance fi ] ) I"'_" A 3

— Cusloaner J

I : i i X
Circumstance j/ o fyi 1 [ - W
— Parmer |
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* Risk is defined as a feasible detrimental
outcome of an activity or action (e.g., launch

or operation of a spacecraft) subject to
hazard(s)

* (1) magnitude (or severity) of the adverse
consequence(s) that can potentially result
from the given activity or action, and

e (2) likelihood of occurrence of the given
adverse consequence(s).

- . Q
[} : i
™
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e Business impact of behavior

— Consequence:
e Fraud
e Debt
* Exception ...

— Magnitude:
* Positive/negative
e Multi-level
e Ratio
e Probabilistic

UTS: A Ai
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e qualitative risk assessment:

— severity and likelihood are both expressed
qualitatively (e.g., high, medium, or low)

e guantitative risk assessment/probabilistic risk
assessment:
— Consequences are expressed numerically

— Their likelihoods of occurrence are expressed as
probabilities or frequencies

UTS: A Ai
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e Causes/Initiators:

— What can go wrong with the studied technological entity,
or what are the initiators or initiating events (undesirable
starting events) that lead to adverse consequence(s)?

e Effects/Consequences:

— What and how severe are the potential detriments, or the
adverse consequences that the technological entity may be
eventually subjected to as a result of the occurrence of the
initiator?

 Functions(cause, effect):

— How likely to occur are these undesirable consequences,
or what are their probabilities or frequencies?

UTS: A Ai
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Factor analysis

Rule-based methods

Cause-effect analysis

Failure Modes and Effects Analyses
Sensitivity analysis

Statistics techniques

AT
¥
n
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* Quantifying accident (or mishap) scenarios

— chains of events that link the initiator to the end-
point detrimental consequences

e Deterministic analysis
* Probabilistic analysis

UTS: A Ai
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 Probabilistic or statistical methods

* Inductive logic methods like event tree
analysis or event sequence diagrams

 Deductive methods like fault tree analysis

AT
¥
n
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Most clients are relatively small.
Few have extreme consequences

Consequence

- ..
hd -
Extreme . » o
. » - - L) .
. . . .
- .. Y . y. . "
Veryngh ... " .\:.. . ‘.' . [ ] . -
: * ME T E A ¢ *
or e 35. s o . . .
TR 2 T I R
High | o8 *"® 4. -~ .
g y . ﬁw.. L] * ’“ - -
o e i R L
T ™ s = T
o Iu -n : ¢ -
Medium -,"
L ] »e - .- "-
- .I. L
y * .
Low '"g .’:‘: '.‘..
X iy‘:, s, ® »
2 0 . . « % %
_ Even - Almost
Rare Unlikely Chance Likely Certain
Likelihood

Most clients are compliant.

Relatively few are deliberately non-compli
" UTS: AA
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High

Consequences

Low

Continuous Continuous
Monitoring Review
Q2 Q1
Periodic o
Monitoring Periodic
Q4 Review
Q3
Likelihood High
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* Impact measuring
— Cost
— Cost-sensitive
— Profit
— Cost-benefit
— Risk score

 |[mpact evolution
— Positive =2 Negative
— Negative - Positive

UTS: A Ai
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e Risk of a pattern, eg.

' Cost(P—T
RZSk(P = T) - TotatlE(Cost(F)’)

L

AvgCost(P — T) = CC(:tt((]f:g))

UTS:AAi
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 Frequent impact-oriented activity patterns

* Frequent activity patterns
 Sequential impact-reversed activity patterns

Here:
Impact - Debt, Fraud, Risk ...

UTS: A Ai
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(P->T}or {P-—>7 (P -

e frequent positive impact-oriented (T) activity
patterns
— P-->T,or

P->T
e frequent impact-oriented ( ) agtivity
patterns
_ P ->T.

P->T

P is an activity sequence, (P ={a, a,,,, ...}, i=0, 1,...).

UTS: A Ai
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{(P>T, P>T)} {P—ST, P->T

e Pattern: pis of high significance in positive impact
dataset, and of low significance in negative impact
dataset, or vice versa.

P {P—>T, P—T}

e Negative impact-contrasted pattern
R :{P>T.P—T}

AT
¥
n
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P->T3{PQ-->T} {P-->%} {PO -->T} ‘

e Sequential impact-reversed activity pattern
pair
— underlying pattern:  {P --> T}  {P-->T}

o

— derivative pattern: PQ -> T} {PO-—>T)

UTS: A Ai
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 Data:
— Time: [1/1/06, 31/3/06]
— No. of activity transactions: 15,932,832
— No. of customers: 495,891
— No. of debts: 30,546

. " ‘
¥
n
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Positive-impact activity sequences: the activities before a debt are putin a
basket. E.g., {a8, a9, a10, a11, al12, a13, d2},{a13, a14, al5, al6,al7, al8,

d3}

Personid= 12593

d; d, d;s
N B o e e BN M e
ay ds dg djy dg Aodjpdj; dAjpx Ajz3 djpg dps djg dj7 Agg
Strategy 1 1L Basket i 1L Basket i+ ]
] B Basket i ]
Strategy 2 [ Basket i+ ]

Negative-impact activity sequences

A virtual activity "NDT" is created for those customers have never
had a debt.

UTS: A Ai

1 6/04/2 O 1 3 1 2 O THE ADVANCED ANALYTICS INSTITUTE



Table 1.Example of an activity sequence
associated with a debt from target dataset
als, a9, al8, al19, al6, a9, DET

Ul

)

|

Ul

START

ACTIVITY CODE | DATE | TIME
ay. 15/02/2006| 13:34:0!

a, 16/02/2006| 16:26:1¢

a, 16/02/2006| 16:26:11

A, 20/02/2006 16:12:3!

ay, 28/02/2006| 11:27:5(

a, 1/03/2006 | 13:50:0]
Dbt 1/03/2006 | 23:59:5¢

16/04/2013

121

Table 2. Example of an activity sequence
related to non-debt from non-target dataset
al4, al6, al, a20, al4, a21, a22, NDT

ACTIVITY | START
CODE DATE TIME
a,, 6/02/2006| 2:19:37
a,, 6/02/2006| 10:21:50
a, 7/02/2006|  3:51:07
2, 7/02/2006 |  4:44:48
a,, 7/02/2006|  9:48:59
a,, 8/02/2006| 10:03:13
2, |15/02/2006 13:55:39
| NoDebt | 15/02/20

3:59:59
- .
| |

L o

THE ADVANCED ANALYTICS INSTITUTE



{P->T}or {P->T}

Patterns  Suppp(P) Suppp(T) Suppp(P — T) Confidence Lift AvgAmt AvgDur risk,,e riskiy,
P—-T (cents) (days)

ay,ag — 1T°  0.0015 0.0364 0.0011 0.7040 194 22074 1.7 0034 0007

as,ay — 1°  0.0018 0.0364 0.0011 0.6222 17.1 22872 1.8 0.037 0.008

ar,aq — 1T° 0.0200 0.0364 0.0125 0.6229 17.1 23784 1.2 0424 0058
ar — T 0.0626 0.0364 0.0147 0.2347 65 23281 2.0 0490  0.111
ag — T 0.2613 0.0364 0.0133 0.0511 1.4 18947 7.2 0362 0370
ag — T 0.1490 0.0364 0.0162 0.1089 30 21749 3.2 0505 0203
ag — T 0.1854 0.0364 0.0139 0.0755 2.1 18200 6.2 0363 0334
ay — T 0.1605 0.0364 0.0113 0.0706 1.9 19090 6.8 0310 0300

UTS: A Ai
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TABLE 8
Common Frequent Sequential Patterns in Separate Data Sets

Patterns (P) Suppp,.(P) Suppp,,(P) Cdy (P) Cdry +(P) Cdy 1(P) Cdry 1(P) AvgAmt AvgDur riskamt Tiskqur 1ty Data

(cents) (days)
as 0.382 0.178 0.204 2.15 0.204 0.47 18200 62 0363 0334 ;y_Time
ar 0.312 0.154 0.157 2.02 -0.157 0.50 19090 6.8 0.310  0.300 W
ag 0.367 0.257 0.110 1.43 0.110 0.70 18947 7.2 0362 0370 "~ |
_ 0.903 0.684 0.219 1.32 0.219 0.76 19251 66 0905 0840 }3:55
as 0.746 0.567 0.179 TABLE 9
ae 0.604 0.597 0.007 Impact-Reversed Sequential Activity Patterns in Separate Data Sets
aq,ais 0.605 0.374 0.231
ars, ais 0.539 0.373 0.167 Underlying Impact 1 Derivative Impact 2 Cir Cps Local support of Local support of
ajp,alq 0.479 0.402 0.076 sequence (P) activity @ P — Impact 1 PQ — Impact 2
ay4.a16 0.441 0.393 0.049
16,216 0.367 0.410 -0.043 a4 P a4 T 2.5 0.013 0.684 0.428
ajq,a14,a15 0477 0.257 0.220 a6 T ay T 22 0.005 0.597 0.147
a14,Q15.Q14 0.435 0.255 0.179 a4 T as T 2.0 0.007 0.684 0.292
16,214, Q14 0.361 0.267 0.093 aie P azr T 1.8 0.004 0.597 0.156
16,014,016 0.265 0.255 0.010 a4 T az g 1.7 0.005 0.684 0.243
""" ays P as T 1.7 0.007 0.567 0.262
¥ %k % 5k K ayq,a14 T ay T 2.3 0.016 0.474 0.367
a6, a4 T as T 2.0 0.006 0.402 0.133
a14,a16 T as T 2.0 0.005 0.393 0.118
ai,a1s P as T 1.8 0.006 0.339 0.128
ars, alq T as T 1.7 0.007 0.381 0.179
a6, a14q T ar T 1.6 0.004 0.402 0.108
a14,a16, @14 T ais T 1.2 0.005 0.248 0.188
a6, 14,014 T als & 1.2 0.005 0.267 0.220




7. Impact-oriented
Behavior Combined
Pattern Analysis
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Longbing Cao. Combined Mining: Analyzing Object and Pattern Relations

for Discovering and Constructing Complex but Actionable Patterns, WIREs
Data Mining and Knowledge Discovery.

Longbing Cao, Huaifeng Zhang, Yanchang Zhao, Dan Luo, Chengqi Zhang.
Combined Mining: Discovering Informative Knowledge in Complex Data,
|IEEE Trans. SMC Part B, 41(3): 699 - 712, 2011.

Yanchang Zhao, Huaifeng Zhang, Longbing Cao, Chengqi Zhang. Combined
Pattern Mining: from Learned Rules to Actionable Knowledge, LNCS
5360/2008, 393-403, 2008.

Huaifeng Zhang, Yanchang Zhao, Longbing Cao and Chenggqi Zhang.
Combined Association Rule Mining, PAKDD2008.

Yanchang Zhao, Huaifeng Zhang, Fernando Figueiredo, Longbing Cao
Chenggqi Zhang, Mining for Combined Association Rules on Multiple
Datasets, Proc. of 2007 ACM SIGKDD Workshop on Domain Driven Data

Mining (DDDM 07), 2007, pp. 18-23. UTS:4A A
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Pn.m.l : Rl (]:L) - Im.l (])

Datnset D; D ={Ds;k=1,...,K)}
Feature set F: F = {Fe;k=1,...,K}

Method set R: R = {Ri:l=1,...,L}

Interestingness set I: T={ZI,;m=1,...,M;l=1,...,L}

Impact set T: T ={7;;5j=1,...,J}

Pattern set P: P={Pumun=1,...,Nym=1,...,M;l

126
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Definition 1 (Combined Mining): Combined mining is a
two-to-multistep data mining procedure, consisting of the
following:

1) Mining atomic patterns P,, ,,, ; as described in (1).

2) Merging atomic pattern sets into combined pattern set
P;. = Gi.(P,,.m.1) for each data set Dy, by pattern merging

method G.: G, € G, where G includes a set of pattern-
merging methods suitable for a particular business prob-
lem.
3) If multiple data sets are involved, combined patterns
identified in specific data sets are then further merged into
the combined pattern set P = G(P}.).
From a high-level perspective, combined mining represents

a generic framework for mining complex patterns in complex
data as follows:

P :=G(Pnm,) (2)

in which atomic patterns P, ,,, ; from either individual sources
Dy, individual methods R;, or particular feature sets Fj. are
combined into groups with the members closely related to each
other in terms of pattern similarity or difference.



1)

2)

3)

The combination of multiple data sources (D): The com-
bined pattern set P consists of multiple atomic patterns
identified in several data sources, respectively, namely,
P = {Pi|P.. : T;.(X;);: X; € Dy }: for example, demo-
graphic data and transactional data are two data sets in-
volved in mining for demographic—transactional patterns.
The combination of multiple features (F): The combined
pattern set P involves multiple features, namely,
P = {Fi|Fr € F,Fi € Di, Fisk € Djqr: 3,k # 0},
e.g., features of customer demographics and behavior.
The combination of multiple methods (R ): The patterns
in the combined set reflect the results mined by multiple
data mining methods, namely, P = {P.|R}. — P.}. for
instance, association mining and classification.

4) The combination of pattern impacts.

128
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* Nonimpact-oriented combined patterns

‘pn:Rf(JYI A"'AJYI')_' Im (3)
P=GPA---AP,)—T 4)

* Impact-oriented combined patterns

Po:{Ri(X1A---AXi)— In} - Th (5)
P:=Q(P;.---.Pn) (6)

UTS: A Ai
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* Pair patterns

Pu=G(P,P)

e Cluster patterns

Pr=00F .-, P,)(n>2)

UTS: A Ai
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e Peer-to-peer patterns

Pe=PiuhH

 Master-slave patterns

{(Pu=PUR,P= f(P)}

e Hierarchy patterns

{P:=Piu P.UP,UP,,P;=G(P),...,P, = G(P))

J

UTS:AA:
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* Independent patterns

{P: Pp}

e Sequential patterns

{P1: Pp}

 Hybrid patterns

{Pi@P---@P;@€ {,],: 1}

UTS: A Ai
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 Multi-source combined pattern mining

~——Combined Mining

Knowledge
I )
attern
Knowledge P,
—Qlk)
Pattem Miner
et P R:
1
Exploratory l*Lf\
miner K, Coordi
B,
=2
Data coordinator ""m"%
(69 RCEL N
— e V,

Fig. I. Combined mining for actionable patterns.

C;\f;;:pk['[) " -DkIIk.&‘Qm {PI.}J . g:\'ptﬂ,f.ﬂm P

¢ UTS: A Ai
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PROCESS: Multisource Combined Mining

INPUT: target data sets Dp (k=1,...,K), business
problem ¥

OUTPUT: combined patterns P

Step 1: Identify a suitable data set or data part, for example, D
for initial mining exploration.

Step 2: Identify the next suitable data set for pattern mining, or
partition whole source data into K data sets supervised by the
findings in Step 1.

Step 3: Data set-kmining: Extract atomic patterns P on data
set/subset D).

FORE=1t0 K
Develop  modeling method Ry with
interestingness 7.
Employ method R ;. on the environment ¢ and data
D). engaging metaknowledge (2,,
Extract the atomic pattern set P..
ENDFOR
Step 4: Pattern merger: Merge atomic patterns into combined
pattern set P.
FORk=1to K
Design the pattern merger functions Gi to merge
all relevant atomic patterns into Pi. by involving domain and
metaknowledge €24 and (2,,, and interestingness 7.
Employ the method G(P1.) on the pattern set Py.
Generate combined patterns into set P = Gi.(Py.).
ENDFOR
Step 5: Enhance pattern actionability to generate deliverables P.
Step 6: Output the deliverables P.
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e Multi-feature combined pattern mining

Definition 2 (MFCPs): Assuming that F;. denotes the set of
features in data set DVi # j, Fi.; N F ; = 0, based on the
variables defined in Section IV-A, an MFCP P is in the form of

Pr:Ru(F1,--~, F0)
P :=Gr(Pk) (8)

where 3i, j, i #j, Fi #0, F; # 0, and Gp is the merging
method for the feature combination.

FAciAay-a2— N
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 Multi-method combined pattern mining

Definition 10 (Multimethod Combined Mining): Assuming
that there are [ data mining methods R; (I = 1,...,L), their
respective interestingness metrics are in the set Z,, (m =
1,...,M). The features available for mining the data set are
denoted by F, and multimethod combined mining is in the
form of

PI : Rl(]:) —® Im.l
P :=Gu(P1) (20)

where G,; is the merging method integrating the patterns
identified by multiple methods.
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 Multi-method combined pattern mining
— Parallel MMCM

eIy, Rl Sm
€ IQ Rn m

Dy
Dy

Py
Pa
DK e.1;, R; -y -
— Serial MMCM

D e,Ri.Fi1.5i1,0m

Pn

Pi, or

{R,F1, 1'1}‘:E P1.

(Ro. Fo.To) e.D . P

(R, Fr.IL} —

Ps.

(23)
(24)

(25)
(26)

P = g(PlePQ!"‘SPﬂ)‘ (22)
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DEFINITION  MULTI-FEATURE COMBINED PATTERNS. Assume Fj. ;i to be the set of
all features in dataset Dy, and Vi # j, Fy.; N\ Fy; =V, based on the variables defined in
Section 2.1, a Multi-Feature Combined Pattern (MFCP) P is in the form of

T # 0 is a target item or class and 3i. j.i # j, F; # 0. F; # 0.

For example, A; can be a demographic itemset, A, can be a
transactional itemset on marketing campaign, A; can be an
itemset from a third-party dataset, and T can be the loyalty level

of a customer.
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e Supp(A->B) = Prob(A”B)
e Conf(A->B) = Prob(A”B) / Prob(A)
e Lift = Conf(A->B) / Prob(B)

Table 6: Traditional Interestingness Measures for Rule

UO+V = C

Supports

Supp(U), Supp(V'), Supp(UV'), Supp(C)
Supp(UC), Supp(VC), Supp(UVC)

Confidences

Conf(U — C), Conf(V — C), Conf(U +V — C)

Lifts

Lift(U — C), Lift(V — C), Lift(U + V — C)
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DEFINITION  CONTRIBUTION. For a multi-feature combined pattern P : X — T,
where X = X, N X, the contribution of X, fo the occurrence of outcome 1" in rule I is

Lift(Xp AN Xe = T)
Lift( X, — T)

Conf(Xp AN Xe —T)
Conf(X, —1T)

Cont.(P) =

Cont,(P) is the lift of X, with X, as a precondition, which
shows how much X, contributes to the rule. Contribution can
be taken as the increase of li ft by appending additional items
X, to arule. Its value falls in [0, +00). A contribution greater
than one means that the additional items in the rule contribute
to the occurrence of the outcome, and a contribution less than
one suggests that it incurs a reverse effect.
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Conto (X, AN X, —=T)

Trae(Xp A Xe = 1) = —T0 e —

Iru1e indicates whether the contribution of X, (or X,) to
the occurrence of 7" increases with X, (or X,) as a precon-
dition. Therefore, “Irye < 17 suggests that X, A Xo — T is
less interesting than X, — 7" and X, — T'. The value of I,
falls in [0, +00). When I, > 1, the higher I, is, the more
interesting the rule is.
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DEFINITION COMBINED PATTERN PAIRS. For impact-orviented combined patterns,
a Combined Pattern Pair (CPP) is in the form of

. ‘X1—>T1
p{lazT

where 1) X1 N Xy = X, and X, is called the prefix of pair P; X; . = X1 \ X, and
Xo. = Xo\ Xy 2) X1 and X2 are different itemsets, and 3) T and T3 are contrary to
each other, or 11 and 15 are same but there is a big difference in the interestingness (say
confidences con f) of the two patterns.

e A combined rule pair is composed of two contrasting rules.

e Eg,. for customers with the same characteristics U, different
policies/campaigns, V,; and V,, can result in different outcomes,

T,andT,.
_ UTS:AAi
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|Conf(P1) — Conf (%), if 17 = Ts;

Loair(P) = § /Conf(Py) Conf(F), if Ty and T; are contrary;

0. otherwise;
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DEFINITION COMBINED PATTERN CLUSTERS. Assume there are k local patterns
X, —=T,.(: =1...., k), k = 3and X1 N Xy N --- N Xy = X, a combined pattern

cluster (CPC) is in the form of

X, — Ty
Xy — Tx

where X, is the prefix of cluster C.

e Based on a combined rule pair, related combined rules can be
organized into a cluster to supplement more information to the
rule pair.

 The rules in cluster C have the same U but different V, which
makes them associated with various results T.
UTS AAi

THE ADVANCED ANALYTICS INSTITUTE



Icluster(c) = P Iylggczaé] Ipa.ir(Pz's P_))
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Ipa.ir(p) = Llft\(Rl) L?ft\(Rz) diSt(T1,T2)

Icluster(c) — 111ax Ipair(R-i.e R])

I#JsR‘h Rj é(‘-T’t #T]

e dist(): the dissimilarity between the descendants of R, and R,

* The interestingness of combined rule pair/cluster is decided by both
the interestingness of rules and the most contrasting rules within the
pair/cluster.

* A cluster made of contrasting confident rules is interesting, because it
explains why different results occur and what can be done to produce
an expected result or avoid an undesirable consequence.
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s | UnAVy — stay
P { UNVy — stay C:< UANVy — churn .

"AVs — churn ’ . ;
v 2 UANVz — stay

 From P, we can see that V, is a preferable policy for
customers with characteristics U.

 If, for some reason, policy V, is inapplicable to the
specific customer group, P is no longer actionable.

* Rule cluster C suggests that another policy V; can be
employed to retain those customers.
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DEFINITION EXTENDED COMBINED PATTERN PAIRS. An Extended Combined Pat-
tern Pair (ECPP) is a special combined pattern pair as follows

£ XP—>T1
) Xp/\Xe—>T-2 '

where X, # (), Xo # D and X, N X, = 0.
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DEFINITION A metric for measuring the difference led by the occurrence of X, in
the above scenario is Conditional Piatetsky-Shapiro’s (P-S) ratio C'ps, which is defined as
follows.

Cps(Xe — T|X,p) = Prob(Xe — T|Xp) — Prob(Xe|Xp) x Prob(T)X,)

_ Prob(X, ANX,—T)  Prob(X, A X,) y Prob(X, —T)
B Prob(X,) Prob(X,) Prob(X,)
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DEFINITION EXTENDED COMBINED PATTERN SEQUENCES. An Extended Combined
Pattern Sequence (ECPC), or called Incremental Combined Pattern Sequence (ICPS), is
a special combined pattern cluster with additional items appending to the adjacent local
patterns incrementally.

(X, —T)
XpANXe1 — 1
S Xp A Xe,l A Xe’g — T3

\ Xp/\Xe,l /\Xe.2/\"‘/\Xe,k—1 — T

where Vi, 1 <1 < k-1, X;71NX;,=X,and X;5:1\ X; = Xe; # 0, ie, Xi41 is an
increment of X;. The above cluster of rules actually makes a sequence of rules, which can
show the impact of the increment of patterns on the outcomes.
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DEFINITION  IMPACT. The impact of X, on the outcome in the rule is

conte(P) —1 :if conte(P) > 1.
1

— 1 :otherwise.

impact,(P) = { L
conte
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* Type A: Demographics differentiated
combined pattern

— Customers with the same actions but different
demographics

- different classes/business impact

A1+ Dy — quick payver
Type A: Ay + D2 — moderate payer
A+ D3 — slow payer

UTS: A Ai

THE ADVANCED ANALYTICS INSTITUTE



 Type B: Action differentiated combined
pattern

— Customers with the same demographics but
taking different actions

- different classes/business impact

|

A1+ D1 — quick payer
Type B: Az + I » moderate payer
Az + Dy slow paver
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e Able to move customers from one class to another
class

o Useful for designing business policy

Behavior 1 Behavior 2

Demographic 1 Slow Fast

\ U -

Demographic 2 Fast Slow
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* Mining Combined Patterns and Patterns
Clusters for Debt Recovery
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* To profile customers according to their

capacity to pay off their debts in shortened
timeframes.

e To target those customers with recovery and
amount options suitable to their own
circumstances, and increase the frequency
and level of repayment.

UTS:AA:
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e Customer demographic data

— Customer ID, gender, age, marital status, number
of children, declared wages, location, benefit type,

e Debt data
— Debt amount, debt start/end date, ...

 Repayment data (transactional)
— Repayment method, amount, time, date, ...

e Class ID: Quick/Moderate/Slow Payer
UTS: A A0
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e The case study is on governmental social security
data with debts raised in the calendar year 2006 and
the corresponding customers and
arrangement/repayment activities.

* The cleaned sample data contains 355,800
customers with their demographic attributes,
arrangements and repayments.

e There are 7,711 traditional associations mined.

UTS: A Ai
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e There were 7,711 association rules before removing
redundancy of combined rules.

e After removing redundancy of combined rules, 2,601

rules were left, which built up 734 combined rule
clusters.

o After removing redundancy of combined rule clusters, 98
rule clusters with 235 rules remained, which was within
the capability of human beings to read.
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Traditional Association Rules

Vv T | Conf(%) | Count | Lift
Arrangement Repayment Class
irregular cash or post office A 82.4 4088 | 1.8
withholding cash or post office A 87.6 | 13354 1.9
withholding & irregular cash or post office A 72.4 304 | 1.6
withholding & irregular | cash or post office & withholding B 60.4 1422 1.7
An Example of Combined Patterns
Rules Xp Xe T | Cnt|Conf| I¢|Lift|Contp|Conte| Liftof| Lift of]
Demographics|Arrangements| Repayments [Class (%) Xp =T\ Xe =T
Py age:65+ withholding | withholding | C 50[ 63.3]12.91|13.40[ 247 4.01 0.85 1.38
& irregular
P mcome:0 | withholding | cash or post | B 20[ 69.0/1.47|1.95| 1.34| 2.15 0.91 1.46
& remote:Y & withholding
& marrital:sep
& gender:F
Ps income:0 | withholding | cashorpost | A |[1123| 62.3|1.38(1.35] 1.72| 1.09 1.24 0.79
& age:65+ & withholding
Py income:0 | withholding | cashorpost | A | 469 93.8]/1.36/2.04| 1.07[ 2.59 0.79 1.90
& gender:F
& benefit:P

160

VIDIAAS

THE ADVANCED ANALYTICS INSTITUTE



An Example of Combined Pattern Clusters

Clusters | Rules Xp Xe T|Cnt|Conf| I.| I.|Lift|Conty|Conte| Lift of| Liftof
demographics | arrangements | repayments (%) Xp —=T|Xe =T
Py P marital:sin uregular  [cashorpost|A| 400| 83.0/1.12|10.67| 1.80 1.01 2.00 0.90 1.79
Ps &gender:F withhold ([cashorpost|A| 520 78.4|1.00 1.70 0.89 1.89 0.90 1.90
P+ &benefitN | withhold & [cashorpost| B| 119| 80.4[1.21 2.28 1.33 2.06 1.10 1.71
iregular | & withhold
Ps withhold |[cashorpost(B| 643| 61.2]1.07 1.73 1.19 1.57 1.10 1.46
& withhold
Py withhold & [withhold & [B| 237 60.6]0.97 1.72 1.07 1.55 I.10 1.60
vol. deduct | direct debit
Pio cash agent C| 33[ 60.0]1.12 323 1.18 3.07 1.05 2.74
P2 P11 age:65+ withhold |[cashorpost|A|1980ls 93.310.86(0.59] 2.02 1.06 1.63 1.24 1.90
Pys uregular  [cash or post| A \%88.7 0.87 1.92 1.08 1.35 1.24 1.79
Pqa withhold & [cashorpost|A| 132| 85.7[0.96 1.86 1.18 1.50 1.24 1.57
uregular
P4 withhold & | withhold 500 63.3[2091 340 247 401 0.85 [.38
irregular
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BUSINESS RULES: Customer Demographic-Arrangement-Repayment combination business rules

For All customer 1 (i € I is the number of valid customers)

Condition:
satisfies S/he is a debtor aged 65 or plus:
relates
S/he is under arrangement of ‘withholding’ and ‘irregularly’.
and
His/her favorite Repaviment method is ‘withholding .

Operation:
Alert = “S/he has ‘High’ risk of paving off debt in a very long timeframe.”
Action = “Trv other arrangements and repavments in Ra, such as trving to persuade
her/him to repay under ‘irregular’ arrangement with ‘cash or post’.”

End-All
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e Mining Extended Combined Pattern Pairs for
Debt Prevention
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e A case study of extend combined pattern pairs on
Centrelink debt-related activity data is given as follows.
More details can be found in [Cao et al. 2008], where
they are called impact-reversed sequential activity
patterns.

 The data involves four data sources, which are activity
files recording activity details, debt files logging debt
details, customer files enclosing customer circumstances,
and earnings files storing earnings details.

 To analyse the relationship between activity and debt,
the data from activity files and debt files are extracted.

UTS:AA:
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e Customer demographic data

— Customer ID, gender, age, marital status, number
of children, declared wages, location, benefit type,

e Debt data
— Debt amount, debt start/end date, ...

 Repayment data (transactional)
— Repayment method, amount, time, date, ...

e Class ID: Quick/Moderate/Slow Payer
UTS: A A0
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 The activity data for us to test the proposed
approaches is Centrelink activity data from Jan. 1st to
Mar. 31st 2006.

 We extract activity data including 15,932,832 activity
records recording government-customer contacts
with 495,891 customers, which lead to 30,546 debts
in the first three months of 2006.

o After data preprocessing and transformation, there
are 454,934 sequences: 16,540 (3.6%) activity

sequences associated with debts and 438,394
(96.4%) sequences with nil debt.
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Examples of Extended Combined Pattern Pairs

Xp T1 | Xe | T2 | Conte | Cps | Local support of | Local support of

Xp — T4 Xp AN Xe — T
a4 T|as | T 2.5 0.013 0.684 0.428
aig T |ag | T | 22 |0.005 0.597 0.147
a4 T |as | T 2.0 0.007 0.684 0.292
ai6 T|ar |T | 1.8 |0.004 0.597 0.156
a4 T|ar |T | 17 |0.005 0.684 0.243
ais T |as | T 1.7 0.007 0.567 0.262
a4, a4 T|as | T 2.3 0.016 0.474 0.367
a4, a6 T |as | T 2.0 0.005 0.393 0.118
ais, a4 T |as | T 1.7 0.007 0.381 0.179
al4.a16,a14 T |ai5 | T 1.2 0.005 0.248 0.188
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{(114%]—“

(14,04 — T

The local supports a1y — T anais— T are
respectively 0.903 and 0.684, so the ratio of W t
values is 1.3.

The local supports (?14:44 =1 zayq,ay — T are
0.428 and 0.119 respectively, so the ratio of W t
values is 3.6.

Whenal4 occurs first, the appearanceadf makes it
more likely to become debtable.

This kind of pattern _|Ioairs help to know what effant
adfltltlonal activity will have on the impact of the
patterns.
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 Exploring the impact of behavior dynamics

e |dentifying the most important behavior
during the evolution
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e Sequential pattern mining
e Very essential for handling order-based critical
business problems.
* Interesting and significant sequential patterns are
generally selected by frequency.

* Insufficient of frequency/support framework
 They do not show the business value and impact.
e Some truly interesting sequences may be filtered
because of their low frequencies.

Example: Retail business .
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Table 1: Quality Table In sequence s,, there are three
ttems | a | b | c|d|e]|f S
4 3 1 1

Quality 2 5

[(a, 2)(e, 6)],

Table 2: Quantitative Sequence Database [(a, 1)(b, 1)(c, 2)] and

s — [(a, 2)(d, 3)(e, 3)].

S I < (&5) llc2)f 1] (b2) > Transaction [(a, 2)(e, 6)] means the

2 L<__[_(‘1'_2_)(_84_6)_];{_[1@_1_)(_17;_1)_(5'_2_)]_-:_1(9'_Z)_(Q'_?’_)Le_'_sl]_f_: customer buys two items, namely g and e.
3 < (61) o, 6)(d,3)e 2)] > (a, 2) means the quanity of item a is 2.

4 < [(b, 2)(e, 2)] [(a, 7)(d, 3)] [(a, 4)(b, 1)(e, 2)] >

5 < [(b, 2)(e, 3)] [(a, 6)(e, 3)] [la, 2)(b, 1)] > The square brackets omitted when there is

only one item in the transaction. For
example: (e, 5), (b, 2) ins; and (c, 1) in s,.
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m Quantitative Sequence

o A W N

Table 1: Quality Table

Quality 2

Table 2: Quantitative Sequence Database

< (e,5) [(c,2)(f, 1)] (b,2) >

< (c, 1) [(a, 6)(d, 3)(e, 2)] >

< [(b, 2)(e, 2)] [(a, 7)(d, 3)] [(a,4)(b, 1)(e, 2)] >

< [(b, 2)(e, 3)]

[(a, 6)(e, 3)]

[(a, 2)(b, 1)] >

The utility of <e>in (e, 6)is6X1=6

The utility of <ea>in s, is
{ ((6X1)+(1X2)),((6X1)+(1X2)) }
= {8, 10}

The utility of <ea> is the database is

{{}, {8, 40}, {}, {i6, 10}, {15, 7}

Add the highest utility in each sequence
to represent the utility of <ea>:
10+16+15=41

If the minimum utility threshold § = 40
then <ea> is a high utility pattern.
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Contributions:

1. We define the problem of mining high utility sequential
patterns systematically.

2. USpan as a novel algorithm for mining high utility
sequential patterns.

3. Two pruning strategies, namely width and depth
pruning, are proposed to reduce the search space

substantially.
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e High utility pattern mining
e Two-Phase Algorithm (Liu et al., UBDM’ 2005)
e |[HUP Algorithm (Ahmed et al., IEEE Trans. TKDE’ 2009)
e UP-Growth (Tseng et al., SIGKDD’ 2010)

* High utility sequential pattern mining
e UMSP (Shie et al.,, DASFAA’ 2011) Designed for mining high utility
mobile sequential patterns.

e UWAS-tree / IUWAS-tree (Ahmed et al., SNPD’ 2010) Designed for
mining the high utility weblog data. IUWAS-tree is for incremental
environment.

e Ul/US (Ahmed et al., ETRI Journal’ 2010) Uses two measurements
of utilities of sequences. No generic framework is proposed.
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m Quantitative Sequence

1

2

3

B

Table 1: Quality Table
(tems | a | b | c|d|e|f]
4 3 1 1

Quality 2 5

Table 2: Quantitative Sequence Database

< (,5) [(c2)f, 1)] (b,2) >
< [(a, 2)(e, 6)] [(a, 1)(b, 1)(c, 2)] [(a, 2)(d, 3)(e, 3)] >
< (¢c,1) [(a,6)(d,3)(e, 2)] >
< [(b, 2)(e, 2)] [(a, 7)(d,3)] [(a,4)(b,1)e, 2)] >
< [(b,2)(e, 3)] [(a,6)(e, 3)] I[(a,2)(b,1)] >

(a, 2): Q-item
[(a, 2)(e, 6)]: Q-itemset
S; - S Q-sequence

* Q-itemset containing

[(a, 4)(b, 1)(e, 2)] contains g-itemsets
(a, 4), [(a, 4)(e, 2)] and [(a, 4)(b, 1)(e, 2)]
but not [(a, 2)(e, 2)] and [(a, 4)(c, 1)].

* (Q-sequence containing

<[(b, 2)(e, 3)]l(a, 6)(e, 3)I[(a, 2)(b, 1)]>
contains g-sequences

<(b, 2)>, <[(b, 2)(e, 3)]> and

<[(b, 2)][(e, 3)l(a, 2)>

but not [(a, 2)(e, 2)] and [(a, 4)(c, 1)].
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m Quantitative Sequence

1
2
3
4
5

Table 1: Quality Table
tems | a | b |c|d]e|f
4 3 1 1

Quality 2 5

Table 2: Quantitative Sequence Database

< (e,5) [, 2)(f,1)] (b,2) >
< [la, 2)(e, 6)] [(a, 1)(b, 1)(c, 2)] [(a, 2)(d, 3)(e, 3)] >
< (c,1) [(a, 6)(d, 3)(e, 2)] >
< [(b, 2)(e, 2)] [(a, 7)(d, 3)] I[(a, 4)(b, 1)(e, 2)] >
< [(b, 2)(e, 3)] [(a,6)(e, 3)] I(a,2)(b,1)] >

Sequence <ea> matches:
<(e, 6)(a, 1)>and <(e, 6)(a, 2)>ins,;
<(e, 2)(a, 7)>and <(e, 2)(a, 4)>in s, ;

<(e, 3)(a, 6)>and <(e, 3)(a, 2)>ins;;

Denote as <(e, 6)(a, 1)> ~ <ea>
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The Sequence Utility Framework

The g-item utility:
u(i, q) = fu;(p(D), q)
The g-itemset utility:

u(® = fu, (a0
j=1
The g-sequence utility:

u(s) = fu (| Jua)
j=1

The g-sequence database utility:

u(S) = fug (| Juts

j=1

The sequence utility in a g-sequence:

e U e
s'~tns’'cs

The sequence utility in a database:

v(t) = U v(t,s)

SES

For example:

v(<ea>, s,) = {u(<(e, 2)(a, 7)>), ul<(e, 2)(a, 4)>)}
v(<ea>) = {v(<ea>,s,), v(<ea>, s,), v(<ea>, s;)}

UTS: A Ai
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High Utility Sequential Pattern Mining

The g-item utility: The sequence utility in a database:

fu (D, q) = p(i) X q N '
The g-itemset utlllty V() = Umax(t) = Z maxtu(s)ls'~tns Ssns €S)

Fu (U“(‘f)) Zu(w W For example:
The g- sequence utility: V(<ea>, s,) = {16, 10}
fun (Uu(l 2= Zu(l) V(<ea>) = { {8, 10}, {16, 10}, {15, 7} }
The g- Seq“ence database utility:  sequence tis a high utility sequential
fudb(U u(sp) = Zu(sf) patternifandonlyifu, 2 ¢

where £ is a user-specified minimum utility.

Target: Extracting all high utility sequential patterns in S satisfying €.

UTS: A Ai
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Challenges of mining for high utility patterns

<a>)=4+12+14+12 =42
<agb>)=7+13+9=29
<abc>)= 15

<(abc)a>)= 19

3
S

3
S

Upnay (
umax(
Upnay (
umax(

No Downward Closure Property

AT
¥
n
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Lexicographic Q-sequence Tree

<>

.//\.

—— S-Concatenate

— |-Concatenate

<a> <b> <c>
{{}{4.2}{12} i S I (N E—
{14.81{12.41 {10,5410,5) {8H8H4KO 0
<(am»
{7} {{({13}{21} {10,714} | eveeee
(134a) {0000) {231} {10}{15}}

<(abc)> <(abe)> <(ab)a> <(ab)d> <(ab)e>
{19} | uthanl | ({1000 | | {16300 | | 00003

/k\

<(abc)a> <(abc)d> <(ab)(ad)> <(ab)(ae)>
....... .
009000 | | oeson | ROGEIE | 020000 | | ©r4000 UTS:AA;
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v(<b>)= {10, 5}

Table 1: Quality Table e 2 2

mnn-nu- V(<(be)>) = {10 +2, 5 + 2} = {12, 7} é
Quality 2 mn
14 8

«
Table 2: Quantitative Sequence Database b - 5
m Quantitative Sequence -
d

9

< (e5) o2 1] (b2) > e 20 .
< [(@ 2)(e6)] o, 1)(b,1)(c, 2] [a,2)(d,3)(e,3)] >  vy(<(be)a>) = {12 + 14, 12 + 8} = {26, ZO}I

< (1) [a 6)(d,3)e 2)] > [ ems | 11 | 1z |

I we
B
[ ]

] |
5

'< [(b, 2)(e, 2)] _[(a, 7)(d, 3)] I[(a, 4)(b, 1)(e, 2)] > E a

< [(b, 2)(e, 3)] [(a,6)(e, 3)] I(a,2)(b,1)] > b
d
¥ e 2
| ltems | Itemset1 | mm v(<(be)(ad)a>) = {35 + 8} V(<(be)(ad)>) = {26 + 9} = {35}
Cems | 11| 12 | 13 mb

ou b~ W N -

9

8
— : a--s.-a--s




Data Representation

Sy : Pattern: ((ad)fd)
N\ |
Sequence 3 \\\ — :
N 1 S-Concatenation
1 2—"——6 [ 8 quantitative
a Sequence 2 = ltems
d
e I 6 7 Ending
£l a Sequencel = /_ o
g C
: s 1.2 3 4 7 /8 9
i f | a ]
1 -
- g | b /
o % =1
1 d B!
eA j===) [~
N
g
Projected h|
quatitative i
Items pivor—  I-Concatenation—’ UTS: AAE
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What is Width Pruning

<> —— » S-Concatenate

—p |-Concatenate

{14,8}{12,4}} {10,5}{10,5}}

1
1
1
i {{H4,21{12} {10H5H} erexaem | !
1
1

<(ab)> <(ac)> <(ad)> <(ae)>

{73 {13121} {10,714} | e
{13)9}) {HI000H 23}0) {10}{15}}

\A

<(abc)> <(ab)a> <(ab)d> <(ab)e>
{{15} 300} {0015 {1 {16330} {10} 300}

L oS

<(abc)a> <(abc)d> | <(abc)e> | <(ab)(ad)> <(ab)(ae)>

....... A AQ
{H19300) {(H{24 X0 {18133 {H2030} {14 X307 Fov.

NTICSINSTITUTE




m Quantitative Sequence m

g b W N

m Quantitative Sequence m

U A W N R

What to Width Prune

Table 1: Quality Table

cldle s
4 3 1 1

Table 2: Quantitative Sequence Database

Quality 2 5

< (e,5) [(c2)f1)] (b2) >

< [(a, 2)(e, 6)] [(a, 1)(b, 1)(c, 2)] [(a, 2)(d, 3)(e, 3)] >

< (c,1) [(a,6)(d, 3)e, 2)] >
< [(b, 2)(e, 2)] [(a, 7)(d,3)] [(a,4)(b,1)(e, 2)] >
< [(b, 2)(e,3)] [(a,6)(e,3)] [(a,2)(b,1)] >

< (&5) [lc2)f,1)] (b2) >

< [(a, 2)(e, 6)] [(a,

1)(b, 1)(c, 2)]

[(a, 2)(d, 3)(e, 3)] >

< (¢, 1) [(a,6)(d, 3)e, 2)] >

< [(b, 2)(e, 2)] [(a, 7)(d, 3)]

< [(b, 2)(e, 3)]

[(a, 6)(e, 3)]

[(a, 4)(b, 1)(e, 2)] >

[(a, 2)(b, 1)] >

24
41
27
50
42

24
41
27

<f> should be width-pruned

SWU(<ea>) = u(s,) + u(s,) + u(ss)
=41 +50+ 24
=115

SWU(<f>) = u(s,) = 24

UTS: A Ai
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What is Depth Pruning

<>

1
1
1
1
I
| (14,8){12,4)
L

—» S-Concatenate

—p  |-Concatenate

<a> i <b> =
4,2}12 | 10513 | | viovrovrmnm | e
{4,212} i ‘ 1{5,5}}{{1 0}%}} {{8HB8H4X}}}

(ab) (ac) <(ad) (ae)>
{H{7}} {13421} {{10.7}{14} [ weee.
<(abc)> <(abe)> <(ab)a> <(ab)d> <(5b)e>
{{H{15}30{H thhbashbe | ({110} {({16}30(0) {10330
<(abc)a> <(abc)d> (abc)e> <(ab)(ad)> <(ab)(ae)> \
....... A A
©O9000 | | 09000 | KUEIHIDE | (0201000} | | 004000 B




m Quantitative Sequence m

v A~ W N

m Quantitative Sequence m

v A~ W N -

What to Depth Prune

Table 1: Quality Table

Quality 2

Table 2: Quantitative Sequence Database

< (5 e 2)(f,1)] (b,2) >
< [(a, 2)(e, 6)] [(a, 1)(b, 1)(c, 2)]
< (¢, 1) [(a, 6)(d,3)e, 2)] >

< [(b, 2)(e, 2)] [(a, 7)(d, 3)]

< [(b, 2)(e, 3)]

[(a, 6)(e, 3)]

[(a, 2)(d, 3)(e, 3)] >

[(a, 4)(b, 1)(e, 2)| >

[(a, 2)(b, 1)] >

< (5 [ 2)(f,1)] (b,2) >
< [(a, 2)(e, 6)] [(a, 1)(b, 1)(c, 2)]
< (c,1) [(a,6)(d,3)e, 2)] >

< [(b, 2)(e, 2)] [(a, 7)(d, 3)]

< [(b, 2)(e, 3)]

[(a, 6)(e, 3)]

[(a, 2)(d, 3)(e, 3)] >

[(a, 4)(b, 1)(e, 2)] >

(a, 2)(b, 1)] >

24
41
27
50
42

24
41
27
50
42

<e(ae)> should be depth-pruned

U, (<ea>) = (8+29) + (16+24) + (15+17,
=37+40 + 32
=109
U, (<e(ae)>) = (18 +9)

=27

UTS: A Ai
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Synthetic Datasets

the average number of 55
items in an element '

the average number of
items per element

Number of items

2.5

1k

Datasets

2.5

10k

Real Datasets

DS3 is a dataset consisting of online
shopping transactions which contains
350,241 transactions and 59,477
customers.

DS4 is a real dataset that includes
mobile communication transactions.
The dataset is a 100,000 mobile call
history from a specific day. There are
67,420 customers in the dataset.

UTS: A Ai
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Performance and distributions (DS2)

500 . 2500
—&— Excution Time(s)
—8— Number of Patterns h
400r 12000
)
] | #
E 300 1500
—
200} 11000
g
100 ! ; : ! : 500
0.002 0.0018 0.0016 0.0014

Minimum Utility Threshold &

Number of Patterns

Number of Patterns

300

—6—0.0012
——0.0014
- ——0.0016
——0.0018 / ‘\
\

0
012345678 910111213141516 17
Length of Patterns

 The running time and the number of patterns grow

exponentially with respect to €.

* The high utility sequential patterns are mid-long UTS:AA;

patterns.
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Time(s)

Scalability Test (DS1 & DS2)

1600 . 1100 ,
—&— DS1 with & = 0.006 —&— DS1 with £ = 0.006 !
1400 | —— DS2 with & = 0.003 1000 —— ps2 with & = 0.003 3
1200} 900r
< 800}
1000} T
@ 700f
w
800} 5
g 600}
600} .
E//E] < 500}
400t /E//_,/" 7 400+
200[;‘_// 1 300E_
0 1 1 200 L 1
50k 100k 150k 200k 50k 100k 150k 200K
Number of Sequences Number of Sequences

 Both the time and memory usage grow linearly with respect

to the size of the DB. UTS:4A A
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High Utility Sequential Pattern vs. Frequent Sequential Patterns (DS3)

2 T T 1
0.002 : : :
—&— USpan s —e— USpan
1.8 —&— Prefixspan 7 B rokrspens
w 1_6 L
g £ 0.0015}
® 14} ' £
a - g
** w
g 12} 3
E Z 0.001
(o] 1+ =
P =
= ©
5 08} 2
£ o
@ 06} £ 0.0005}
o )
04+t
0.2 : . ' 0 = 8
0 500 1000 1500 2000 4 5

Top # Patterns Length of Pattern

e USpan out performs Prefixspan with respect to the utilities

of the patterns. UTS: A A
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. We define the problem of mining high utility sequential
patterns.

. We propose the USpan to efficiently mine for mining high
utility sequential patterns.

. Two pruning strategies are proposed to substantially
reduce the search space.

. Experiments on both synthetic and real datasets show
that USpan can discover the high utility sequential
patterns efficiently.

- . Q
[} : i
™
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9. Negative Behavior Analysis
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Negative sequential pattern mining
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| " i
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Xiangjun Dong, Zhigang Zhao, Longbing Cao, Yanchang Zhao, Chengqi
Zhang, Jinjiu Li, Wei Wei, Yuming Ou. e-NSP: Efficient Negative Sequential

Pattern Mining Based on Identified Positive Patterns Without Database
Rescanning, CIKM 2011, 825-830.

Zhigang Zheng, Yanchang Zhao, Ziye Zuo, Longbing Cao. An Efficient GA-
Based Algorithm for Mining Negative Sequential Patterns, PAKDD2010,
262-273.

Zhigang Zheng, Yanchang Zhao, Ziye Zuo, Longbing Cao. Negative-GSP: An
Efficient Method for Mining Negative Sequential Patterns, AusDM 2009:
63-67.

Yanchang Zhao, Huaifeng Zhang, Shanshan Wu, Jian Pei,Longbing Cao,
Chenggqi Zhang and Hans Bohlscheid. Debt Detection in Social Security by
Sequence Classification Using Both Positive and Negative Patterns,
ECML/PKDD2009, 648-663.

Yanchang Zhao, Huaifeng Zhang, Longbing Cao, Chenggi Zhang and Hans
Bohlscheid. Mining Both Positive and Negative Impact-Oriented
Sequential Rules From Transactional Data, PAKDD2009, pp.656-663.
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What i1s negative sequential patterns?
Focus on negative relationship between 1itemsets
Absent items are taken into consideration

Example:
p,=<abcd> vs p,=<ab 7ce>

Fach item, a, b, ¢, d and e, stands for a claim 1tem of
Insurance.

pl:an insurant usually claims for a, b, ¢c and d in a claim.

p2: does NOT claim c after a and b, then claim 1item e
Instead of d.

UTS:4 A
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PSP: Positive Sequential Pattern

= Only contain occurring itemsets
E.g. pl=<a b c X>.

Existing Methods:
AprioriAll, GSP, FreeSpan, PrefixSpan, SPADE , SPAM

NSP: Negative Sequential Pattern
= Also contain non-occurring itemsets
E.g. pl=<a b -c X>.

Limited research:
Neg GSP, PNSP UTSiﬁAi
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o Apriori principle doesn’t work for
some situations

o Huge search space

— 10 distinct 1items
— 3-item PSC: 103
— 3-item NSC: 203

UTS:4 A
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B High Computational Complexity.
Additionally scanning database after identifying PSP.

B Large NSC Search Space.
k-size NSC by conducting a joining operation on (k-1 )-
size NSP. (NSC : Negative Sequential Candidates)

B No Unified Definition about Negative Containment.
How a data sequence contains a negative sequence?
<a> contains < a-a >? <a> contains < -a a-a >?

- . Q
[} : i
™
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(Negative sequence an"alysis)

Table 1. Supports, Confidences and Lifts of Four Types of Sequential Rules

Rules Support Confidence
I A— B P(AB) %
I | A— =B | pcay—pean) DA A
I | ~A— B | p(B)-pP(aeB) T
IV | A — -B | 1—-P(A)—P(B)+P(A&B) %ﬁ(

| - |

Table 4. Selected Positive and Negative Sequential Rules

Type Rule Support Confidence Lift
REA ADV ADV—-DEB 0.103 0.53 2.02

DOC DOC REA REA ANO—DEB 0.101 0.33 1.28

RPR ANO—DEB 0.111 0.33 1.26

1] RPR STM STM RPR—DEB 0.137 0.32 1:22
MCV—=DEB 0.104 0.31 1.19

ANO—=DEB 0.139 0.31 1.19

STM PYI—-DEB 0.106 0.30 1.16

STM PYR RPR REA RPT— -DEB 0.166 0.86 1.16
MND— -DEB 0.116 0.85 1.18

STM PYR RPR DOC RPT— -DEB 0.120 0.84 1.14

11 STM PYR RPR REA PLN— -DEB 0.132 0.84 1.14
REA PYR RPR RPT— —-DEB 0.176 0.84 1.34

REA DOC REA CPI— -DEB 0.083 0.83 .22

REA CRT DLY— —-DEB 0.091 0.83 1.12

REA CPI— -DEB 0.109 0.83 1.12

—-{PYR RPR REA STM}—=DEB 0.169 0.33 1.26

-{PYR CCO}—DEB 0.165 0.32 1.24

-{STM RPR REA RPT}—DEB 0.184 0.29 1.8

111 -{RPT RPR REA RPT}—DEB 0.213 0.29 1+32
-{CCO RPT}—DEB 0.171 0.29 [ 1

-{CCO PLN}—=DEB 0.187 0.28 1.09

—-{PLN RPT}—=DEB 0.212 0.28 1.08

-{ADV REA ADV}— —-DEB 0.648 0.80 1.08

-{STM EAN}— -DEB 0.651 0.79 1707

v -{REA EAN}— -DEB 0.650 0.79 1.07
-{DOC FRV}— -DEB 0.677 0.78 1.06

-{DOC DOC STM EAN}— —-DEB 0.673 0.78 1.06
-{CCO EAN}— -DEB 0.681 0.78 1.05




* Find good (frequent) genes with good performance
(supp), and optimize genes (FP) through crossover
and mutation, m*generations

* Improve gene quality (making more and more
frequent)

Strengths:

 Treat candidates unequally

* Very low support threshold
 Find long-NSP at the beginning

A
m =l
2013/4/16 Footer text here THE ADVANCEDANAL\‘TI% TITUTE



o New generations- good genes (freq
patterns) through crossover and
mutation operations.

o Population evolution control- fitness and
dynamic fitness.

o Performance improvement: pruning

method (check constraints of NSP)

A
m =il
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Sequence (general)

s =<e,e,..e >

ie.<a b (c,d)e> <a bce>
Positive/Negative Sequence

s, =<e,e,...e,>, all elements are positive

p

s, =<e,e,...e,>, at least one element is

negative
Negatlve Sequential Pattern

Its support 1s greater than minimum support threshold.
— Two or more continuous negative elements are not accepted.

— For each negative item, its corresponding positive item 1s required to be
frequent.

— Items in an element should be all positive or all negative. 1.e. <a (a,7b)c> is

not allowed.
[ 4
UTS: 4 Ai

THE ADVANCED ANALYT! TITUTE



 Negative Matching

Negative Matching. A negative sequence s,=<ej €3 ... x>
matches adata sequence s=<d; ds ... d,,,>, iff:

1) s contains the max positive subsequence of s,,

2) for each negative element e;(/<i<k), there exist integers
P, ¢ r(1<p<g<r<m) such that: Je;, 1 Cd,Ne;}1Zd,,
and for Vd,, e;7 d,

Sequence | Matching | Data Sequence
S, <b ¢ a> No <b fdca>
S, <b 7cda> Yes <b fdca>

UTS: A Ai
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= Encoding

Sequence Chromosome
geney  genez  genes
<ab-(cd)>|=]| +a +b —(c,d)

s Crossover

childl|b—-cade
child2|de b —-c a

childl]b—ce] [parentl]b-ca |
child2| da parent2| [de

parentl|b —-c | a
parent2| dJ e

U

=
=

= Mutation
Select a random position and then replace all genes after

that position with 1-item patterns
L 4
UTS:4Ai
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= Fitness & Dynamic Fitness

ind. fitness = (ind.support — min_sup) X DatasetSize. (1)

ind. fitness, initial set

ind.dfitnessx(1 — DecayRate), if ind is selected @)

ind.dfitness = {

m Selection

Selection(pop){ / /Subfunction for selecting top K individuals from population
for (each ind with top K dfitness in pop){
popK .add(ind).
ind.dfitness = ind.dfitness x (1-decay_rate).
if (ind.dfitness < 0.01) ind.dfitness =0;
}
return popK:;

W ilJs ﬁfﬁl
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-

Operation

[ Crossover |
[ mutadion

~ Yes

Select Top K Individuals
(Dynamic Fitness)

ind. fitness = (ind.support — min_sup) X DatasetSize.

(1)

ind.dfitness = {

ind. fitness, initial set
ind.dfitness x(1 — DecayRate), if ind is selected

‘Q
(2) Pi




s GA-NSP Pseudocode

RunGA(min-sup, decay-rate, crossover-rate, mutation_ra,te){

pop = initialPopulation();
for (each individual ind in pop){

ind. fitness = calculateFitness(ind);

ind.dfitness = ind. fitness

pop.sum.dfitness = pop.sum_dfitness + ind.dfitness
\};/hile ( pop.sum_dfitness > 0){

popIK = Selection(pop);

if (Random()<crossover_rate) Crossover(pop K ),

if (Random()<mutation_rate) Mutation(pop K);

for (each individual ind in popK)

if (Prune(ind) ! =true && ind.sup >= min.sup) pop.add(ind);

}

return pop;

¥
UTS:AA
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Datasets

Dataset1(DS1) is C8.T8.84.18.DB10k.N1k, which means
the average number of elements in a sequence 1s 8, the
average number of items 1n an element 1s 8, the average
length of a maximal pattern consists of 4 elements and
each element 1s composed of 8 items average. The data set
contains 10k sequences, the number of items 1s 1000.

Dataset2(DS2) is C10.7T2.5.84.12.5.DB100k.N10k.

Dataset3(DS3) is C20.T4.56.18.DB10k.N2k.
Datasetd(DS4) is real application data for insurance claims.

UTS:4 A
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——— CrossoverRate 60%
_ —&— CrossoverRate 80%
) —h&— CrossoverRate 90%
P s ~ll- CrossoverRate 100%
(=]
3‘; Q
£ | £
= o
8 £ 0.15
[ o
§ o
0.1
e Crossover Rate § | &
c
S
x 0.05
o L 1
0.24 0.22 0.2 0.18
Min_sup
Crossover Rate (DS1)
10 0.18
_ 0.16
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£, E
- = 0.1
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e Mutation Rate

Patten count(%)

60% ——4— MutationRate 20%
7 —8— MutationRate 10%
40% X —A— MutationRate 5%
: "R ~ll- MutationRate 0%
20%
"
B |
0% '
0.24 0.22 0.2 0.18
Min_sup
Mutation Rate (DS1)
0.14
-~ 0.12
&
£ o1 ¢
E e
2 0.08 A
- b |
o
2 0.06
@
. 0.04
T —e— MutationRate 20%
é 0.02 —&— MutationRate 10%
” —&— MutationRate 5%
8 -l MutationRate 0%

0.022

0.02 0.018

Min_sup

Mutation Rate (DS2)
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 Decay Rate

—4— DecayRate 5%
—&—DecayRate 20%

'-;— —A— DecayRate 40%
: N
e 0.15
o \\
Y
®
-4
1] 0l1
.E \
t
3 0.05 &
[+
0 ! ! |
0.24 0.22 0.2 0.18
Min_sup
Decay Rate (DS1)

0.18

0.16 .
» \
E 0.14
S \
£ 0.12
®
= 0.1
o
2 0.08
®
-E 0.06 ——o—DecayRate 5%
S 0.04 —8— DecayRate 10%
g —A— DecayRate 20%

0.02 ~ll- DecayRate 30%

5 —#— DecayRate 40%

0.022 0.02 0.018
Min_sup
Decay Rate (DS2)
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 Comparison with PNSP, Neg-GSP

Runtime(s)

14000
12000
10000
8000
6000
4000

2000

—4—GA

—8— Neg-GSP
—m- PNSP /°

0.022 0.02 0.018
Min_sup

0.016

Runtime Comparison (DS2)

Runtime per pattern(s)

0.25

0.2

0.15

0.1

0.05

—A—GA
—@— Neg-GSP
; : —- PSNP
0.022 0.02 0.018 0.016
Min_sup

Runtime/Pattern Comparison (DS2)
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Classification of both positive and negative
behavior patterns

eHuaifeng Zhang, Yanchang Zhao, Longbing Cao, Chengqi Zhang and Hans Bohlscheid. Customer Activity
Sequence Classification for Debt Prevention in Social Security, Journal of Computer Science and Technology,
24(6): 1000-1009 (2009).

eYanchang Zhao, Huaifeng Zhang, Shanshan Wu, Jian Pei,Longbing Cao, Chenggi Zhang and Hans Bohlscheid.

Debt Detection in Social Security by Sequence Classification Using Both Positive and Negative Patte ®
ECML/PKDD2009, 648-663. U I S- A Ai
|
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Let 7 be a finite set of class labels. A sequential
classifier is a function

F: 87, (1)

In sequence classification, the classifier F is built on the
base of frequent classifiable sequential patterns P.

Definition 3.1 (Classifiable Sequential Pat-
tern). Classifiable Sequential Patterns (CSP) are fre-
quent sequential patterns for the sequential classifier in
the form of p, = 7, where p, is a frequent pattern in
the sequence database S.

Based on the mined classifiable sequential patterns,
a sequential classifier can be formulised as

F:s T (2) .
' viS:AAi
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Class correlation ratio

corr(pa — 7)

CCR(p, — 7) =

corr(p, — 7) =

corr(p, — —T) a

sup(pa U 7)

a-(c+d)
c-(a+b)’

a-n

sup(pa) - sup(T)

T (ato - (atb)

Table 2. Feature-Class Contingency Table

Pa Pa | D]
T a b a+b
-7 c d c+d
Z a+c b+d n=a+b+c+d

UTS:AAi
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Table 4. Selected Positive and Negative Sequential Rules

Type Rule Support Confidence Lift
REA ADV ADV—DEB 0.103 0.53 2.02

DOC DOC REA REA ANO—DEB 0.101 0.33 1.28

RPR ANO—DEB 0111 0.33 1.25

1 RPR 5TM STM RFR—DEBE 0.137 0.32 1.22
MCV—DEB 0.104 0.31 1.19

ANO—DEB 0,139 0.31 1.19

STM PYI—DEB 0.106 0.30 1.16

ETM PYR RFR REA RPT— -DEB 0.166 0.86 1.16
MND— -DEB 0.116 0.85 115

STM PYR RPR DOC RPT— -DEB 0.120 0.84 1.14

11 STM PYR RPR REA PLN— -DEB 0.132 0.84 1.14
REA PYR RPR RPT— -DEB 0.176 0.84 1.14

REA DOC REA CPI— -DEB 0.083 0.83 1.12

REA CRT DLY— -DEB 0.091 0.83 1.12

REA CPl— -DEB 0.109 0.83 1.12

-{PYR RFR REA STM}—DEB 0.169 0.33 1.26

-{PYR CCO}—DEB 0.165 0.32 1.24

-{STM RFPR REA RPT}—DEB 0.184 0.29 1.13

111 -{RFPT RFR REA RPT}—DEB 0.213 0.29 1.12
-{CCO RPT}—DEB 0.171 0.29 1.11

-{CCO PLN}—DEB 0.187 0.28 1.09

-{PLN RFPT}—DEB 0.212 0.28 1.08

-{ADV REA ADV}— -DEB 0.648 0.80 1.08

-{STM EAN}— -DEB 0.651 0.79 1.07

v -{REA EAN}— -DEB 0.650 0.79 1.07
-{DOC FRV}— -DEB 0.677 0.78 1.06

-{DOC DOC STM EAN}— -DEB 0.673 0.78 1.06
-{CCO EAN}— -DEB 0.681 0.78 1.05

UTS:AAi
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Table 5. The Number of Patterns in PS10 and PS05

PS10 (min_sup = 0.1 ) | PSO5 (min_sup = 0.05)

Number | Percent(%) | Number | Percent(%)
Type 93,382 12.05 | 127,174 3.03
Type I | 45821 591 | 942498 20.14
Type 111 | 79,481 10.25 | 1,317,588 40.74
Type IV | 556,491 7L.79 846,611 26.18
Total 775,175 100 | 3,233,871 100

Table 6. Classification Results with Pattern Set PS05-4K

Pattern Number 40 60 80 100 150 | 200 | 300
Recall 438 | 416 | .286 | .281 | .422 | 492 | .659
Precision | .340 | .352 | .505 | .520 | .503 | .474 | .433

Neg&Pos
Accuracy | .655 | .670 | .757 | .T61 | .T57 | .T42 | .705
Specificity | .726 | .752 | .909 | 916 | .865 | .823 | .720
Recall 130 ) .124 | 141 135 151 | .400 | .605
. Precision | .533 | .523 | .546 | 472 | .491 | .490 | .483

Positive

Accuracy | .760 | .758 | .749 752 .74 | .752 | .745
Specificity | .963 | .963 | .946 | 951 .949 | 865 | .T90

ki
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= Negative ltem/Element:
Non-occurring item / element

= Negative Sequence
A seguence Includes at least one negative item

= Positive-partner of a Negative Element
/Sequence

p(=e)= e.
p(<a-(ab) c>) =<a(ab) c>.

= Max Positive Sub-sequence
MPS(<an(ab)c>) = <ac>. UTS:AA



Constraint 1. Frequency Constraint

This paper only focuses on the negative sequences ns whose positive
partner is frequent, i.e., sup(p(ns))>=min_ sup.

Constraint 2. Format Constraint

Continuous negative elements in a NSC are not allowed.
<=(ab)c-d> v
<=(ab)-cd> X

Constraint 3. Element Negative Constraint
The minimum negative unit in a NSC is an element.
<=(ab)c d> v
<(-ab) cd> X UTS:AAi
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E-NSP: Only use corresponding PSP information to

calculate the support of negative sequence, without
additional database scanning.

® A definition about negative containment.
® Three constraints for negative sequence

® A smart method to generate negative sequence
candidate (NSC).

® A conversion strategy to convert negative containment
problems to positive containment problems.

® A method to calculate the support of NSC. UTS=%£§



A

—
.

Sequence
database

Gener5“"Convert

Mine all PSP by traditional PSP mining algorithms;
Generate NSC based on these PSP;
Convert these NSC to corresponding PSP;

Get supports of NSC by calculating support of
corresponding PSP.




Definition 4. Negative Containment Definition

Let ds=<di1 d2 ... di> be a data sequence, ns=<s1 $2

. $;»> be an m-size and n-neg-size negative sequence, (1)
if m>2t+1, then ds does not contain ns; (2) if m=1 and
n=1, then ds contains ns when p(ns)Zds; (3) otherwise, ds
contains ns if, V(s;,id(s;)) € EidS, s (1<i< m), one of the
following three holds:
(a) (Isb=1) or (Isb>1)Ap(s1)Z<d; ... disp—1>, When i=1,
(b) (fse=t) or (0<fse<t)Ap(sm)ZL<dfses1 ... d:>, when i=m,
(c) (fse>0 N lsb=fse+1) or (fse>0 A lsb>fse+1) A p(si) €
<dfse-|-1 ... disp—1>, when 1<i<m,

where fse=FSE(MPS(<s1 s2 ... 8i_1>),ds), lsb=LSB(

MPS(<8it1 ... Sm>),ds).
UTS:AAI
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>

n5=< ns,eft, _'e, nS
MPS(ns,eft) e MPS(ns,,-ght)

——r e

right

ds=<51’ oooooo 'Si’ SI-+1,...S!-_1, SI’ ooooooooo St>

ds contains ns if <s,,...,s; > contain MPS(ns,)
<s;...5;> contain MPS(ns,; ,.) , and <'s;,;,...s; ;,

>doesn’t contain <e>. (To EACH negative .
element -e in ns) UTS:AAL,
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ns=<a-bb(cde)>. ds=<a(bc)d(cde)>.

< a -b b(cde)>
e e e

ey gy gy
ds= <a (bc)d(cde)>.

ds contains ns. UTS:AAi



1-neg-size Maximum Sub-sequence is a sequence
that includes MPS(ns) and one negative element e in
original sequence order.

1-neg-size maximum sub-sequence set is a set that

includes all 1-neg-size maximum sub-sequences of ns,
denoted as 1-negMss,,..

Example ns=<a-bc-d>,

1-negMSSns ={<a-bc>, <ac-d>}
UTS:AAi
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Given a data sequence ds=<d; ds ... d;>, and ns=<s;
S2 ... Sm>, which is an m-size and n-neg-size negative se-
quence, the negative containment definition can be convert-
ed as follows: data sequence ds contains negative sequence
ns if and only if the two conditions hold: (1) M PS(ns) C ds;
and (2) V 1-negMS € 1-negM SS,s, p(1-negMS) € ds.

Example ns =<a-bb-a(cde)>, ds=<a(bc)d(cde)>.
1-negMSSns={ <a-bb(cde)> , <ab-a(cde)> }
(1)MPS(ns)=< ab(cde)>L1ds;
(2)p(<a-bb(cde)> )= <abb(cde)> [ ds;
p(<ab-a(cde)> )= <aba(cde)> [ ds; UTS: A

ds contains ns
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sup(ns)=K ns }|I={MPS(ns)} - 0 {p(1-negMS)}| (1)
Because o{p(1-negMS)} 00 {MPS(ns)}, equation 1 can be rewritten as:
sup(ns)= KMPS(ns)}| -|o{p(1-negMS)}

= sup(MP3(ns))-|o{p(1-negMS)} (2)
Example 10 sup(<a-bc-de>)=sup(<ace>})-|{<abce>}1] {<acde>}|;

sup(<-aa~a>)=sup(<a>)-|{<aa>}L{<aa>}|=sup(<a>)-sup(<aa>).
If ns only contains a negative element, the support oS is:
sup(ns) = sup(MP3(ns)) - sup(p(ns)) (3)
Example 11 sup(<a-bce>) = sup(<ace>) - sup(<abce>)
Specially, for negative sequence-e >,

sup(<-e>) =|D| —sup(<e>). @ UTS:AA;
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sup(ns)

=[ {MPS(ns)} | — | Uiza{p(1-negM S;)} |

= sup(MPS(ns))— | Uiy {p(1 — negM S))} | (2)

aon g

PSP Support {sid}
<a> 4 -
<b> 3 -
T 2 -
<a a> 3 {20,30,40}
<a b> 3 {10,20,30}
<a c> 2 {10,30}
<b c> 2 110,30}
<(ab)> 2 -
<a b c> 2 {10,30}
<a (ab)> 2 {20,30}

Calculate the
union set of

{p(1-negMSi)}.
(p(1-negMSi)
are frequent.)

UTS:AAi
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Definition . e-NSP Candidate Generation

For a k-size PSP, its NSC are generated by changing
any m non-contiguous element(s) to its (their)
negative one(s), m=1,2, ...,  k/2], where| k/2 |is a
minimum integer that is not less than k/2.

Example. s=<(ab) c d> include:
m=1, <-(ab) c d>,<(ab) -cd>,<(ab) c-d>;
m=2, <-~(ab) c ~d>.

- . Q
[} : i
™
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Table 1: Example Data Set

Sid Data Sequence
10 | <a b c>

20 | <a (ab)>

30 | <(ae) (ab) c>

40 <a a>

50 <d>

Table 2: Example Result - Positive Patterns

Pep Support {sid}
<a> 1 -
<b> 3 -
A e 2 -
<a a> 3 {20,30,40}
<a b> 3 {10,20,30}
<a c> 2 {10,30}
<b c> 2 {10,30}
<(ab)> 2 -
<a b c> 2 {10,30}
<a (ab)> 2 {20,30}

UTS: A Ai
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able 3:
(min_sup=—=2)

Example Result - INSC an

upp

PSP

Related PSP

*

a

b
C
a

Al ANATAIA

2
o
V

b e>

(ab)

a (ab)>

<a b c>

A ARA ARAT A A A

c>, <b >

b e>, <a b c>
ac>, <a b c>
a b>, <a b c>

<b>, <a b>, <b c>

O OONOWH DN O = o= = W)=




Data Sets

Four source datasets including both real
data and synthetic datasets generated by
IBM data generator. Partition these
datasets to 14 datasets according to
different data factors.

- . Q
[} : i
™
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Table 4: Dataset Characteristics Analysis Result

1D Dataset min NGSP PNSF| eNSP tg /to
Characteristics sup (t1,s) (to,s) (tg,s)
0.04 1451.7 638.2 14.94 2.3%
DS1 C8T4S6l16.DB10k.N100 0.06 241.4 163.1 4.16 2.5%
0.08 78.9 61.9 1.53 2.5%
0.01 517.5 208.4 1.08 0.5%
DS1.1 Cc4T4S616. DB10k.N100 0.015| 130.4 64.5 0.33 0.5%
0.02 48.0 28.4 0.16 0.5%
0.14 229.0 191.9 7.99 4.2%
DS1.2 C12T4S616.DB10k.N100 0.16 127.6 109.5 4.49 4.1%
0.18 o508 66.9 2.53 3.8%
0.22 130.8 118.5 5.22 4.4%
DS1.3 C8T8S616.DB10k.N100 0.24 83.7 76.5 3.19 4.2%
0.26 55.9 52.8 2.14 4.1%
0.3 1205.2 969.3 57.55 5.9%
DS1.4 C8T12S616.DB10k.N100 0.4 133.2 123.5 6.75 5.5%
0.5 23.6 23.0 1.06 4.6%
0.04 1130.0 478.6 13.99 2.6%
DS1.5 C8T4sS1216.DB10k.N100 0.06 187.0 124.7 3.39 2.7%
0.08 61.2 47.5 1.23 2.6%
0.04 297.1 157.4 3.47 2.2%
DS1.6 C8T4sS1816.DB10k.N 100 0.06 64.2 45.5 0.97 2.1%
0.08 23.5 19.0 0.36 1.9%
0.06 690.2 395.1 7.33 1.9%
DSi.7 C8T4S6110.DB10k.N100 0.07 334.7 227.5 4.23 1.9%
0.08 188.1 138.0 2.63 1.9%
0.08 983.9 630.8 R.88 1.4%
DS1.8 C8T4S6114.DB10k.N100 0.1 320.5 248.9 3.63 1.5%
0.12 141.8 LA 1.61 1.4%
0.03 378.2 98.4 0.59 0.6%
DS1.9 CR8T4S616.DB10k.IN200 0.04 101.8 43.1 i b g 0.4%
0.05 39.5 23.3 0.06 0.3%
0.015| 823.0 97.4 0.08 0.1%
DS1.10| C8T4S616.DB10k.IN400 0.02 197.3 42.0 0.03 0.1%
0.025| 99.8 20.6 0.02 0.1%
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We have proposed a simple but very efficient NSP mining
algorithm: e-NSP. E-NSP includes:

B A formal definition, negative containment, to define how a
data sequence contains a negative sequence.

B A negative conversion strategy to convert negative
containing problems to positive containing problems.

B A method to calculate the supports of NSC only using the
corresponding PSP.

B Asimple but efficient approach to generate NSC.

B The experimental results and comparisons on 14 datasets
from different data characteristics perspectives have clearly
shown that e-NSP is much more efficient than e
existing approaches. UTS:YAAE



10. Coupled/Group
Behavior Analysis
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Can Wang, Zhong She, Longbing Cao. Coupled Clustering Ensemble: Incorporating

Coupling Relationships Both between Base Clusterings and Objects, ICDE2013.

Longbing Cao, Yuming Ou, Philip S Yu. Coupled Behavior Analysis with Applications,
IEEE Trans. on Knowledge and Data Engineering, 24(8): 1378-1392 (2012).

Longbing Cao, Yuming Ou, Philip S YU, Gang Wei. Detecting Abnormal Coupled
Sequences and Sequence Changes in Group-based Manipulative Trading Behaviors,
KDD2010, 85-94.

Yin Song, Longbing Cao, et al. Coupled Behavior Analysis for Capturing Coupling
Relationships in Group-based Market Manipulation, KDD 2012, 976-984.

Yin Song and Longbing Cao. Graph-based Coupled Behavior Analysis: A Case Study
on Detecting Collaborative Manipulations in Stock Markets, IJCNN 2012, 1-8.

Can Wang, Mingchun Wang, Zhong She, Longbing Cao. CD: A Coupled
Discretization Algorithm, PAKDD2012, 407-418

UTS: A Ai
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What is Coupled Behavior?

Longbing Cao, In-depth Behavior Understanding and Use: the Behavior Informatics Approach, Information Science,
180(17); 3067-3085, 2010.

*
www.behaviorinformatics.org UTS = AAI
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Figure 6: Relationships between Multiple Behaviors
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e Logic/semantic relation based behavior
coupling

e Statistical/Probabilistic relation based
behavior coupling
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¥
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Logic/Semantic Relation based Group
Behavior Analysis

Longbing Cao. Combined Mining: Analyzing Object and Pattern Relations for Discovering and Constructing Complex
but Actionable Patterns, WIREs Data Mining and Knowledge Discovery.

Longbing Cao. Zhao Y., Zhang, C. Mining Impact-Targeted Activity Patterns in Imbalanced Data, IEEE Trans. on

Knowledge and Data Engineering, 20(8): 1053-1066, 2008.
¢
- %
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From temporal aspect

e Serial Coupling: 7'Sy:1'Sa;--- TS,

e Interleaving Coupling: 7'Sy : 'Sy : -+ : T'S,,

® Shared-variable Coupling: T'Si1||[T'S2|||- - - [||T°Sn
e Channel System Coupling: 7'Sy | T'S2 | --- | T'Sn
e Synchronous Coupling: T'Sy | TSz || --- || T°S»

From inferential aspect

e Causal Coupling: T'51 — T'52

e Precedential Coupling: T'S1 = 1'Ss
e Intentional Coupling: T'Sy — T'Sa
¢ Inclusive Coupling: T'Sy — T'S2

e Exclusive Coupling: 'S & T'Ss

From combinational aspect

e Hierarchical Coupling: f(g(1'S1.TSa,... . T'S,))
e Hybrid Coupling: f(7'S1).¢(T'S2), f(T'S1)", (I'S1)¥

e One-Party-Multiple-Behavior Coupling: f(1'S1,7T'Sa, -+,
T8, )14

¢ Multiple-Party-One-Behavior Coupling: f(T'Sq)4142 Anl

UTS: AAi
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e Multiple-Party-Multiple-Behavior Coupling: f(1'S1,T'S2
yooe TS, )lA1A2An]



e Tracing: Different actions with sequential order.
{a,8,,a)

o Consequence{: Differ}ent actions have causalities in occurrence.
g -8

e Synchronization: Different actions occur at the same time.
{al S, o an}

e Combination: Different actions occur in concurrency.
{afa].la}

UTS: A Ai
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e Exclusion: Different actions occur mutually exclusively.
{a0a0, 03]

e Precedence: Different actions have required precedence

{a=a]

And more to be explored...

e Sequential Combination— AxBxCx-..
e Parallel Combination—— AOBO CO---

e Nested Combination
e Fuzzy or probabilistic Combination

UTS: A Ai
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DEFINITION EXTENDED COMBINED PATTERN PAIRS. An Extended Combined Pat-
tern Pair (ECPP) is a special combined pattern pair as follows

Group 1 behavior

£ XP—>T1
) Xp/\Xe—>T-2 '

where X, # (), Xo # D and X, N X, = 0. Group 2 behavior

UTS:AA:
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DEFINITION EXTENDED COMBINED PATTERN SEQUENCES. An Extended Combined
Pattern Sequence (ECPC), or called Incremental Combined Pattern Sequence (ICPS), is
a special combined pattern cluster with additional items appending to the adjacent local

patterns incrementally.

(X, =T ] Group 1 behavior

X, A Xy — T
S Xp A Xe,l A Xe’g — T3

Group K behavior

| Xp A X AXep A A X g /Tj
where Vi, 1 <1 < k-1, X;71NX;,=X,and X;5:1\ X; = Xe; # 0, ie, Xi41 is an

increment of X;. The above cluster of rules actually makes a sequence of rules, which can
show the impact of the increment of patterns on the outcomes.

UTS:AA:
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* Type A: Demographics differentiated
combined pattern

— Customers with the same actions but different
demographics

- different classes/business impact

A1+ Dy — quick payver
Type A: Ay + D2 — moderate payer
A+ D3 — slow payer

UTS: A Ai
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 Type B: Action differentiated combined
pattern

— Customers with the same demographics but
taking different actions

- different classes/business impact

|

A1+ D1 — quick payer
Type B: Az + I » moderate payer
Aa+ Dy — slow paver

UTS: A Ai
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An Example of Combined Pattern Clusters

Clusters | Rules Xp Xe T|Cnt|Conf| I.| I.|Lift|Conty|Conte| Lift of| Liftof
demographics | arrangements | repayments (%) Xp —=T|Xe =T
Py P marital:sin uregular  [cashorpost|A| 400| 83.0/1.12|10.67| 1.80 1.01 2.00 0.90 1.79
Pg | &gender:’F withhold [cashorpost|A| 520 78.4[1.00 1.70 0.89 1.89 0.90 1.90
P+ &benefitN | withhold & [cashorpost| B| 119| 80.4[1.21 2.28 1.33 2.06 1.10 1.71
iregular | & withhold
Ps withhold |[cashorpost(B| 643| 61.2]1.07 1.73 1.19 1.57 1.10 1.46
& withhold
Py withhold & [withhold & [B| 237 60.6]0.97 1.72 1.07 1.55 I.10 1.60
vol. deduct | direct debit
Pio cash agent C| 33| 60.0[1.12 3.23 1.18 3.07 1.05 2.74
P2 P11 age:65+ withhold |[cashorpost|A|1980ls 93.310.86(0.59] 2.02 1.06 1.63 1.24 1.90
Pys uregular  [cash or post| A \%88.7 0.87 1.92 1.08 1.35 1.24 1.79
Pqa withhold & [cashorpost|A| 132| 85.7[0.96 1.86 1.18 1.50 1.24 1.57
uregular
Pi4 withhold & | withhold 501 63.3]2.91 340 247 401 0.85 [.38
irregular

258
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Figure 2: Pattern Evolution Chart

TMC - U

TMC,GPS — U

TMC,GPS,DAG — U,

TMC,GPS,DAG,PPJ — U;
TMC,GPS,DAG,PPJ,OMF — Uj
TMC,GPS,DAG,PPJ,OMF.IKR — U_)
TMC,GPS,DAG,PPJ,OMF,IKR,TMC — U
TMC,GPS,DAG,PPJ,OMF IKR,TMC ,PPJ — U3
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(PLN — T

PLN.DOC — T

PLN,DOC,DOC — T

PLN, DOC, DOC, DOC' — T
PLN,DOC, DOC, DOC, REA — T
PLN,DOC, DOC, DOC, REA,IES — T

* Divergence vs. convergence of group
behaviors

UTS: A Ai
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Statistical/Probabilistic Behavior
Coupling Analysis

Yin Song, Longbing Cao, et al. Coupled Behavior Analysis for Capturing Coupling Relationships in Group-based
Market Manipulation, KDD 2012, 976-984.

Yin Song and Longbing Cao. Graph-based Coupled Behavior Analysis: A Case Study on Detecting Collaborative
Manipulations in Stock Markets, IJCNN 2012, 1-8.

Longbing Cao, Yuming Ou, Philip S Yu. Coupled Behavior Analysis with Applications, IEEE Trans. on Knowledge and

Data Engineering, 24(8): 1378-1392 (2012). "
. ) - . 4
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| ]
" J

[ actors (customers): {61,&2,....67}
J: behaviors for an actor &;: {Bi1,Bio,... B}
Behavior B;; : ﬁw = ([psjl1, [Pijl, -+« 5 [Pijlx)

Behavior Feature Matrix:

By1 B ... By,

Boy Boo ... Bay
FM(B)=| . .

]BH ]BIQ ]BI_]max
UTS: A A



Transactional Data

B1
B2
B3
B4
B5
B6
B7
B8

Investor | Time | Direction | Price | Volume
(1) 09:59:52 Sell 12.0 155
(2) 10:00:35 Buy 11.8 2000
(3) 10:00:56 Buy 11.8 150
(2) 10:01:23 Sell 11.9 200
(1) 10:01:38 Buy 11.8 200
(4) 10:01:47 Buy 11.9 200
(5) 10:02:02 Buy 11.9 250
(2) 10:02:04 Sell 11.9 500

Behavior Feature

Matrix
/Bl Bs @\
By, By By
#Fﬁ\[(B)z B, o @
B @ ©
\B: 2 o)

UTS: A Ai
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Definition 2. (Intra-Coupled Behaviors) Actor &;’s behaviors B;; (1 < j <
Jmaz) are intra-coupled in terms of coupling function 0;(-).

Jma:::
B! :=B..(£,6.%.,0) Y 6;() OB (1)
j=1

105(-)] 2 bo (2)

de:t

where O is the intra-coupling threshold, iy © means the subsequent behavior
of B; is B;; intra-coupled with 8;(-), and so on, with nondeterminism.

By B ... By,
21 Boo ... Baoy .
FM(B) =
\Bn Bro ... Bis,../

UTS: A Ai
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Definition 3. (Inter-Coupled Behaviors) Actor &;’s behaviors B;; (1 <1< 1)
are inter-coupled with each other in terms of coupling function n;(-),

I
B”. :=B,(£,0,%.m)|) n() OB (3)

1=1

m:(4)] > mo (4)

. . . I .
where 1y is the inter-coupling threshold, ), ® means the subsequent behavior
of B; is B;; inter-coupled with n;(-), and so on, with nondeterminism.

(]Bll ]BIQ i e w Bljmam\

Bot | Boo ... ngmax
FMB)=1| . i ., :

\B: |Br ... Brs..

UTS: A Ai
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| ]
3 j

Definition 4 (Coupled Behaviors) Coupled behaviors B, refer to behaviorsB; ;,
and By, j, that are coupled in terms of relationships f(6(-),n(-)), where (i1 # 12)

V (J1 # jo) A1 <igyio <T)A(1 < 1,52 < Jmag)

ma:r.

B.= (B!, )"+ (B! )" :=By(6,0,¢,%) Z Z

11,02=1)1,)2=1

f(ngJz( ) 72112( )) (thBlsz) ( )

OO




Theorem 1. (Coupled Behavior Analysis (CBA)) The analysis
of coupled behaviors (CBA Problem for short) is to build the
objective function g(-) under the condition that behaviors are
coupled with each other by coupling function f(-), and satisfy
the following conditions.

f() == f(0(),n()), 9)
g(-)|(f(-) = fo) 2 g0 (10)

p—

. " ‘
¥
n
THE ADVANCED ANALYTICS INSTITUTE



Coupled Hidden Markov Model-based
Abnormal Coupled Behavior Analysis

Longbing Cao, Yuming Ou, Philip S Yu. Coupled Behavior Analysis with Application, IEEE Trans. Knowledge and

Data Engineering.
Cao, L., Ou Y, Yu PS, Wei G. Detecting Abnormal Coupled Sequences and Sequence Changes in Group-based

Manipulative Trading Behaviors, KDD2010.
e
- b
UTS:AAi
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TABLE 1
An example of buy and sell orders

Investor | Time | Direction | Price | Volume
(1) 09:59:52 Sell 12.0 155
) 10:00:35 Buy 11.8 | 2000
(3) 10:00:56 Buy 11.8 150
(2) 10:01:23 Sell 11.9 200
(1) 10:01:38 Buy 11.8 200
4) 10:01:47 Buy 11.9 200
(5) 10:02:02 Buy 19 250
(2) 10:02:04 Sell 11.9 500

Price
12.0
11.9
11.8

(h Legend:
¥ (B3] ) ¥ osell
‘ + ‘l () (5) »  uadc
(2) (3) (1
>
9:59:352 10:00:35 10:01:23  10:01:40 10:02:02 Time

10:00:56 10:01:38 10:02:05

Fig. 1. Coupled Trading Behaviors
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E by, by by,
§ 1 1 1
by, by, Sy, by,
SOH ] M: "‘al
1@ 1 1
sell, seil, sell, sell,
trade, rade, trade,
i1 it it
—_—
r-1 t t+1 Tise

(a) An Example of Coupled Trading Be-
haviors in Stock Markets

UTS:AAi
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{Actor,- — Operation; n Actorj — Operation; |1, ;

Attributes; Attributes; tj=liwinsize
(12)
(1) - selé (1)—ouy
09:59:52:12.0:155 lOOl:SSéQ‘
(2)-buy (2)—sell (2)—sell trade
10:00:35,11.8,2000 10:01:23:11.9:200 10:02:04:11.9.500.450

Fig. 2. Behavior sequences - Data Structure 1

UTS: A Ai
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Actor; — Operation;

Category : -
ey =4 Attributes;
Acto:';- - F;peratzonj }; T tmeien (14)
ttri utesj

. (1) — s2ii (2)—sadl (2)—sadl

" 09:59.52.12.0:155 10:01:23.11.9.200 100204, 119<oo
’) trade

1002 04,11.9;450
(2)-buy (1) buy
Buy: 10:00 35,118, 2000 10-01:38.11.8. 200

Fig. 3. Behavior sequences - Data Structure 2

UTS:AAi

THE ADVANCED ANALYTICS INSTITUTE



 Coupled behavior sequences

b, ={C‘511.---s¢51’1‘}‘

Dy = {d21,....02F}

dc = {dc1,...,0cc}
— Coupling relationship

Ri; (®s, ;)

Ry C R, Rij (P, d;) =@
— Behavior properties

Cbz‘k('Pz‘k.h- .- -Pz‘k.L)

UTS: A Ai
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IM.’L’

L hO. Dy
T
) s
Sdf,_. ”H' °1
() i
trade, , trade, @,
CA 5/
-1 4 r+l Tame i

(b) The Structure of the CHMM

UTS:AAi
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CBA problem — CHM M model

®(B.)|category — X
M(®(B.))|oi([pisls - - - [Pis]k) = Y
fO0(),n() — 2
Initial distribution of ®(B.)|category — 7w

(15)
(16)
(17)
(18)
(19)

UTS:AAi
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.

. ACHMM
/ ; g — 1
i esting data Sequence ) Qutput
o Sequence 2 CHMM -
\ extractor T Analyzer
LY e PR alk
Source : -~ ) \
data \ n Y Model
Sequence 3 Adjustor T

4 Sequence | |

Framing

dama

&z

Significant
change

Fig. 5. Framework of abnormal coupled behavior detection
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Hidden States
Shuy _ { Positive Buy, N eutral Buy, Negative Buy}
geett — { Positive Sell, Neutral Sell, Negative Sell}

Strede — (Market Up, Market Down}

UTS:AAi
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Observation Sequences
Activity (A)
A= {a1,a.2,.. .,}
ai = (a(ts), p(ts), v(t:))

a(t;) = {buy | sell | trade}

p(ti) = {buy price|sell price|trade price}

v(ti) = {buy volume|sell volume|trade volume}
Interval Activity (IA)

A={A1, Az, ..., An}

Ai(a) = Aj(a)
El;fl Pi f=|Al=n = 2?71 v

quantization

p
TA(A, p. o, f) IA (0, f)

UTS:AAi
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Window 1 Window 2 Window 3

Figure 3: Update Point of ACHMM

update __ aLeld o new
x;j = (1 —w)zy; +w*xy

update __ N, old , new
Yij - (1 - u’)yij + w k Yy

update __ _yLold o new
% = (1 —w)zyr +w*zy

)
ﬂ;‘pdate =1 —w)ﬂ'?d +wskm

v

UTS: A Ai
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Algorithm 1 Constructing observation sequences

Step 1: Segment the whole trading day into L intervals
by a time window with the length winsize.

Step 2: Calculate I A for buy-order, sell-order and trade
activities respectively in each window. They are denoted
as [ A?"y, TA7" and T A{"@9€ respectively.

Step 3: Obtain IA;b"y, TAZ and TA;"% by quantiz-
ing IA?“”, A" and [ Ajmede,

Step 4: Obtain the trading activity sequnce I A*™Y for
/
buy-order by putting all /A ,b“y in a trading day together.

Obtain T A*" and T A% in the same way. We obtain
TAMWPE = [ A[VPe [ AZUPE . [ AtYPe (19)

where type € {buy, sell, trade}. TAPY [ A% and [ AtTade
are the observation sequences of CHMM in the day.

Step 5: Repeat Step 1-4 for each trading day

UTS: A Ai
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V.

Algorithm 2 Detecting abnormal trading sequences
Step 1: Construct trading sequences including train-
ing sequences Seq;, Segz,--- . Seqx and test sequences
Seq;, Seq;, e Seq;(,.

Step 2: Train the ACHMM model on the training se-
quences;

Step 3: Compute the mean () and standard deviation
(o) of probability of training sequences according to the
following formulas:

2K Pr(Seqi|ACHMM)
"= K

(20)

K
1 | .
o=\ = ZH Pr(Seq:|]ACHMM)) —pu  (21)

where K is the total number of training sequences, mean
e represents the centroid of model ACHMM, and the stan-
dard deviation o represents the radius of model ACHMNM.

Step 4: For each test sequence S eq;, calculate its distance
D; to the centroid of model by

p — Pr(Seq;|M)
(2}

Dy =

(22)
Consequently, Seq; is an exceptional pattern, if it satisfies:

D; > o (23)

where 1/ is a given threshold. UTS.AAi
|
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e Benchmark Models
— HMM-B
— HMM-S
— HMM-T

— CHMM
— ACHMM

UTS:AAi
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 Technical performance

TP+TN
Accuracy = TP FN+FP+TN (43)
. ¢ off o
Precision = TP+ FP (44)
TP
Recall = TP+ FN (45)
TN

e Business performance

Return = In pp[ (48)
t—1

Abnormal Return = Return — (y + £ Return™*™ ") (49)

UTS: A Ai
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winsze = 20 minutes

"20 0 40 50 60 "20 0 40 50 80

P-Num

winsize = 30 minutes

3 07 & a >
20 30 40 50 60 20 0 40 50 €0

P-Num P-Num
[ HMM-T 0= HMM-B -+ HMM-S -=v— IHMM — 8 — CHMM —e— ACHMM |

Figure 4: Accuracy of Six Models

winsize = 10 minutes winsize = 20 minutes
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02}
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Figure 6: Recall of Six Models
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Figure 5: Precision of Six Models
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Figure 7: Specificity of Six Models



wrare = 10 mndes

winsie = 0 minles winae = 20 minaes
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Fig. 9. Return of Six Models

| 2= T MM e M-S v (MM — @ — M —— ACHWM |

Fig. 10. Abnormal Return of Six Models
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e Computational cost

TABLE 5
Computational performance

[THMM [CHMM [ACHMM |

winsize | Training time (s)| 0.574 | 11.978 | 11.988
=10 (m)| Test time (s) 0.056 | 1.296 3.576
winsize | Training time (s)| 0.256 | 4.929 4.933
=20 (m)| Test time (s) 0.047 | 0.655 3.486
winsize | Training time (s)| 0.206 | 4.121 4119
=30 (m)| Test time (s) 0.042 | 0.447 2.429
winsize [ Training time (s)[ 0.109 | 2.003 2.004
=60 (m)| Test time (s) 0.036 | 0.221 1.206

UTS: A Ai
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Conditional Probability Distribution-
based Coupled Behavior Analysis

Yin Song, Longbing Cao, et al. Coupled Behavior Analysis for Capturing Coupling Relationships in Group-based
Market Manipulation, KDD 2012, 976-984.

Yin Song and Longbing Cao. Graph-based Coupled Behavior Analysis: A Case Study on Detecting Collaborative

Manipulations in Stock Markets, IJCNN 2012, 1-8. UTS P
s AAi
| |
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sell;
"/’—
m 1 B ] m&l
buy, sell,
buy, sell,
b\l}'g lIa&‘.' sell; hry; 'é tﬂkz sell;
\.'?:u Voluzme Price
Time QL“,;“ Volume
Orda No. Ordar No.2

(a) The Coupled Behaviors (b) Link Generation Using

with Reference and Analy- Reference Properties.
sis Properties.
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1 trade, trade

>

-1 f t+l Time

(¢) The Structure of Graph-based Cou-
pled Behavior Model
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Geagh Modeling the
(Training Data) poankantee I
® The CPD of
g the Coupled
g Bebmaor:
=
S
Input L
s The Ascmly

Figure 2: The Work Flow of the Proposed Frame-
work.
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/ Seul

] mdel
/ sell;

trade;

buy; [~

buy: [——

-

(a) An Example of the Sub-
graphs for Each Target Behav-

101
X' RFy RFy | --- | RF,
tradey i Tfn Tf21 S Tfnl
trades ) rfio | vfoa | --- | Tfn2

(b) An Example of the Relational Features
for Each Target Behavior

CPD

p(X(t)IRFhRF?"" rRFn)

UTS: A Ai
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e Estimate p(RF/X)

P(RFIIX(”) p(RFQIX(t)) e p(RFnIX(t))

o Estimate cro px©irE,---  RE.)

ap(X)p(RF1|X )p(RF2|XY) - p(RFA| X ")

UTS:AAi
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e CBA problem - CPD problem

CBA problem — SRL M odeling (5)
f(0(),n(-)) — the CPD p(X"|RFy,--- ,RF,) (6

UTS:AAi
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Relational Bayesian Classifiers (RBCs)
The CPD p(X"D|RF;.--- , RF,) can be estimated as

ap(XD)p(RF|XD)p(RF,|XD) ... p(RF,IXD)  (8)

where « is the normalized constant.

e Conditional likelihood:

CL(b*) = Hbft)ebk p(X® = .'r.bgt)|rfu,rf2n-" yTfni; M)

UTS: A Ai
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Relational Probability Trees (RPTs)

The RPT algorithm uses aggregation functions (e.g, mode,
count, proportion and degree) to transform the relational
features of subgraphs to propositional features and use these
features to construct probability trees.

UTS: A Ai
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—O— CRA-REC - oB.g, Oa,
O CRA-RPT " poO, _BDgaO W _ sp s - TS
CRA-CHAMM sst ‘e a8 0 8¢
15 0 -] ] 10 15 20 ] ® 0 15 2 ] k<]
P-Num P-Num P-Num
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The 20" ACM Conference on Information and Knowledge Management (CIKM 2011)

Coupled Nominal Similarity
in Unsupervised Learning

Can Wang, Longbing Cao, Mingchun Wang,
Jinjiu Li, Wei Wei, Yuming Ou

University of Technology, Sydney, Australia

Wednesday, 26 Oct. 2011, Glasgow,UK
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= Similarity Analysis
= Related Work
= Motivation: Example

m Coupled Nominal Similarity
- Intra-coupled Interaction
- Inter-coupled Interaction
= Theoretical Analysis
= Back to Example
= Experiment and Evaluation
= Conclusion

\/
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Attribute
Data Values

The more two objects resemble

The larger the similarity .
UTS:AA;



Nominal

Continuous
* Supervised
- Value Distance
Matrix
- Modified Value
Distance Matrix
- Heterogeneous
* Unsupervised

...... (Our Focus)

o(z,y)=z—y|

LP Distance
- Manhattan

- Euclidean
- Minkowski
- Chebyshev

tAAi
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v’ Simple Matching (SM)
v’ Jaccard
v" Russell and Rao

Unsupervised
Nomma\,

v’ Occurrence Frequency
v Goodall
v Anderberg

v’ Iterated Contextual
v Ahmad and Dey (AD)
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Movie Director Actor Genre
Godfather 11 Scorsese De Niro Crime G
Good Fellas Coppola De Niro Crime G

Vertigo Hitchcock  Stewart Thriller Go

N by NW Hitchcock Grant Thriller Go
Bishop’s Wife Koster Grant Comedy G2
Harvey Koster Stewart  Comedy G2

Matching Coefficient: | Similar directors |
Sim(Scorsese, Coppola) = 0;
Sim(Koster, Hitchcock) = Sim(Koster, Coppola).

Former, Larger ]

Value Frequency Distribution:
Sim (Scorsese, Coppola) < Sim(Koster, Hitchcock)

Feature Dependency Aggregation: Former, Larger ]

Sim (Koster, Koster) = Sim(Scorsese, Coppola) s AAj
wwmmmwﬁ




Integration

\ /

( N €
Value Feature
Frequency Dependency
Distribution Aggregation
- Intra-coupled ; Inter-coupled <
Slmllarlfy wn‘hm Similarity between
an Attribute Attributes

A
2 b A5
n
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u1 A1 \"—>@Bps—( (i
u2 Ao \ B1 N/ C1
s A SGye G
uy As ( Bz C?
us Ay Nam B3 C3
ug Ay Bs Cs

DEFINITION 4.1. Given an information table S, the Cou-

pled Attribute Value Similarity (CAVS) between attribute
values x and y of feature a; 1s:

55 (,y) = 8;" (2,9) - 6;° (2, y) (4.1)
where 63{ “ and 531- © are IaAVS and 1eAV'S, respectively.
{ Intra-coupled Interaction:

5;° (,y) i
Inter-coupled Interaction: §; UTS: A A

J
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DEFINITION 4.2. Given an information table S, the Intra-
coupled Attribute Value Simailarity (IaAVS) between at-

tribute values x and y of feature a; 1s:

o 19:(2)] - la; W)
% @) = L@ s+ 6@ Gl D

Rationale:

. The Greater similarity is assigned to the attribute value pair
which owns approximately equal frequencies.

¢ The higher these frequencies are, the closer such two values are.
9

)

1aA VS has been captured to characterize the value

similarity in terms of attribute value occurrence times.
~—— s —

—/ THE ADVANCED ANALYTICS INSTITUTE




Modified Value Distance Matrix:
Djic(z,y) = > |Pe;({g}|z) — Py ({g}v)
geL

Object Co-occurrence
Probability

Inter-coupled Relative Similarity based on Power Set (IRSP), Universal Set
(IRSU), Join Set (IRSJ), and Intersection Set (IRSI).

IRSP: OJM(:I: y) = min {2 — P;(W|z) — Pklj(le)}
WCV,

IRSU: 50, (2,y) =2 — Z max{ Py ;({w}|z), Pr; ({w}ly)}

we Vi

IRST:  &(2,y) =2 — Y max{Py;({w}|2), Py;({w}|y)}
w € Pisk(x)Jpisk(y)

IRST: Jlk 2.8 = Z min{ Pr; ({w}|z), Pr; ({w}y) }UTS AAi
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DEFINITION 4.5. Given an information table S, the Inter-
coupled Attribute Value Simalarity (IeAVS) between at-

tribute values x and y of feature a; is:

5z y) = > ardip(x,y), (4.7)
k=1,k+#j

where oy, is the weight parameter for feature ar, >, _, ar =
1, ar € [0,1], and d;x(z,y) is one of the inter-coupled rela-
tive similarity candidates.

(B

IeAVS focuses on the object co-occurrence comparisons
with four inter-coupled relative similarity options.

o/

Coupled Object Similarity (COS) between objects:
AN A Ja Je At
COS(U.;'I,’U,,;Q) = Z O_f(l’ilj,l’wj) where Oj (CU, y) = Oj (93, y) . Oj (iU, y)nAi

NSTITUTE

j=1



- Computational Accuracy Equivalence:
THEOREM 5.1. IRSP, IRSU, IRSJ and IRSI are all equiv-

alent to one another.’ [Inter-coupled Relative Similarity ]

IRSP <> IRSU <= IRSJ <> IRSI

- Computational Complexity Comparison:
Flops per Step Complexity

Metric  Calculation Steps

AD ——
IRSP nR(R —1)/2 2(n — 1)2% O(n*R*2%)
IRSU nR(R—1)/2 2(n—1)R O(n“R*R)
TRSJ nR(R—1)/2 2(n — 1)P O(n?RZ%R)
TRSI nR(R—1)/2 2(n —1)Q O(rn?R?R)

RS R>P>

— 2 @ R: The maximal number of

@ attribute values. JTS:=4A As

IRSP 2 |IRSU 2 IRSJ 2 IRSI



Coupled Nominal Similarity:

Sim(Scorsese, Coppola) = Sim(Coppola, Coppola) =0.33
Sim(Koster, Hitchcock) = 0.25 Sim(Koster, Coppola) =0
Sim(Koster, Koster) = Sim(Hitchcock, Hitchcock) = 0.5

Movie Director Actor Genre
Godfather I1 Scorsese De Niro Crime G1
Good Fellas Coppola De Niro Crime G1

Vertigo Hitchcock Stewart Thriller Go

N by NW Hitchcock Grant Thriller Go
Bishop’s Wife Koster Grant Comedy G2
Harvey Koster Stewart Comedy G2

AN

Sim(Koster, Hitchcock) > Sim(Koster, Coppola)
Sim (Scorsese, Coppola) > Sim(Koster, Hitchcock)
Sim (Koster, Koster) > Sim(Scorsese, Coppola)

a Scorsese and Coppola are very similar directors N

/

UTS: A Ai
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Several experiments are performed on extensive UCI
data sets to show the effectiveness and efficiency.

= Coupled Similarity Comparison
The goal is to show the obvious superiority of IRSI, compared
with the most time-consuming one IRSP.

= COS Application (COD)
Four groups of experiments are conducted on the same data
sets by k-modes(KM) with ADD (existing methods), KM with
COD, spectral clustering(SC) with ADD, and SC with COD.

- . Q
[} : i
™
THE ADVANCED ANALYTICS INSTITUTE
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In summary, all of the above experiment results clearly
show that IRSI outperforms IRSU, IRSJ, and IRSP in terms of
the computational complexity, no matter how small or large,
simple or complicated a data set is.

In particular, with the increasing numbers of either
features or attribute values, IRSI demonstrates superior
efficiency compared to the others. IRSJ and IRSU follow, with
IRSP being the most time-consuming, especially for the
large-scale data set.
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Accuracy
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We draw the following two conclusions:

= Intra-coupled relative similarity IRSI is the most
efficient one when compared with IRSP, IRSU and IRSJ,

especially for large-scale data.

= Our proposed object dissimilarity metric COD is better
than others, such as dependency aggregation only ADD,
for categorical data in terms of clustering qualities.
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Coupled Similarity )
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11. Challenges and Prospects
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/ Complex Behaviors === Behavior Algebra \
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We could develop two directions to explicate complex behaviors:
qualitative and quantitative behavior analytics

With the formal representation of coupled behaviors, the qualitative
analytics addresses the task of behavior reasoning and verification,
while the quantitative research targets behavior learning and
evaluation. Finally, an appropriate way could be chosen to integrate
these two studies to obtain an integrated understanding of the implicit
complex behaviors from both qualitative and quantitative aspects.

During this process, many open issues are worth systematic
investigation along with case studies from aspects such as behavior
reasoning, behavior learning, behavior evaluation, behavior
integration at individual but more on group levels. UTS:AA:
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e Formal methods

e Reasoning

* Modelling check

 Quantitative representation and learning
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Intention learning
Negative sequence/behaviour analysis
Complex behaviour/sequence analysis

Behaviour impact learning
Behaviour utility learning

Early prediction of high impact/utility
behaviours
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Group intent learning

Coupled sequence modelling and analysis
Coupling relationship learning
Heterogeneous behaviour learning

Social influence analysis

Contrast group analysis

Divergence vs. convergence of group
behaviors
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e |EEE Task Force on Behavior and Social
Informatics and Computing (BSIC)

e www.behaviorinformatics.org
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Behavior and Social Informatics Workshops:

e PAKDD - BSI 2013 Australia
http://datamining.it.uts.edu.au/bsi/bsi2013/
e [JCAI—BSIC 2013 China
http://datamining.it.uts.edu.au/bsi/bsic2013/
e [JCAI 2013 Tutorial

— Behavior Informatics

e Special Issue with World Wide Web Journal
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