Transfer Learning with Applications

Sinno Jialin Pan¹, Qiang Yang^{2,3} and Wei Fan³

¹ Institute for Infocomm Research, Singapore
 ² Hong Kong University of Science and Technology
 ³ Huawei Noah's Ark Research Lab, Hong Kong

Outline

Part I: An overview of transfer learning – (Sinno J. Pan)

Part II: Transfer learning applications (Prof. Qiang Yang)

Part III: Advanced research topics: heterogeneous transfer learning (Wei Fan)

Transfer Learning Overview

Sinno Jialin Pan (Ph.D.)

Lab Head, Text Analytics, Data Analytics Department, Institute for Infocomm Research (I2R), Singapore

Transfer of Learning

A psychological point of view

- The study of dependency of human conduct, learning or performance on prior experience.
 - [Thorndike and Woodworth, 1901] explored how individuals would transfer in one context to another context that share similar characteristics.

 \succ C++ \rightarrow Java

➤ Maths/Physics → Computer Science/Economics

Transfer Learning

In the machine learning community

- The ability of a system to recognize and apply knowledge and skills learned in previous domains/tasks to novel tasks/domains, which share some commonality.
- Given a target domain/task, how to identify the commonality between the domain/task and previous domains/tasks, and transfer knowledge from the previous domains/tasks to the target one?

Transfer Learning

Transfer Learning Different fields

• Transfer learning for reinforcement learning.

[Taylor and Stone, Transfer Learning for Reinforcement Learning Domains: A Survey, JMLR 2009] • Transfer learning for classification, and regression problems.

[Pan and Yang, A Survey on Transfer Learning, IEEE TKDE 2010]

Motivating Example I: Indoor WiFi localization

12R

Indoor WiFi Localization (cont.)

Difference between Domains

Time Period A

Time Period B

8

Device B

Device A

Motivating Example II: Sentiment classification

10 hours ago Edward Priz × replied:					\sim	\frown	\sim
	used as Rights" racist o 10 hours a	s a cover for r thing has be olicies has go TH★ replied: The issue if he has be abuse	e here is probable cause. A police officer can probable cause, and he can document it. Thi d if being Latino is probable cause. That is li r the police. As long as the law is applied fair	s law can cense to			
		2 hours ago Julia Gome)	
			The Arizona law is so clearly unconstitution it will ever reach the point of being enforce say so, but the Republican governor is afr electorate that is even more reactionary the she signed the bill, not because she think defensible.	ed. The article did not aid of a GOP primary an usual. That is why	0 °		
						9	<i>I</i> ² R

A * S T A R

Sentiment Classification (cont.)

Difference between Domains

	Electronics	Video Games	
	(1) Compact ; easy to operate;	(2) A very good game! It is	
	very good picture quality;	action packed and full of	
B	looks sharp !	excitement. I am very much	
		hooked on this game.	
	(3) I purchased this unit from	(4) Very realistic shooting	
	Circuit City and I was very	action and good plots. We	
	excited about the quality of the	played this and were hooked.	
	picture. It is really nice and		
	sharp.		
	(5) It is also quite blurry in	(6) The game is so boring . I	
3	very dark settings. I will never	am extremely unhappy and will	
	buy HP again.	probably never buy UbiSoft	
		again.	

A Major Assumption in Traditional Machine Learning

Training and future (test) data come from the same domain, which implies

□ Represented in the same feature spaces.

□ Follow the same data distribution.

In Real-world Applications

- Training and testing data may come from different domains, which have:
 - Different marginal distributions, or different feature spaces:

 $\mathcal{X}_S \neq \mathcal{X}_T$, or $P_S(x) \neq P_T(x)$

Different predictive distributions, or different label spaces:

 $\mathcal{Y}_S \neq \mathcal{Y}_T$, or $f_S \neq f_T (P_S(y|x) \neq P_T(y|x))$

How to Build Systems on Each Domain of Interest

Build every system from scratch?Time consuming and expensive!

Reuse common knowledge extracted from existing systems?
 More practical!

The Goal of Transfer Learning

Transfer Learning Settings

Transfer Learning Approaches

Instance-based Transfer Learning Approaches

General Assumption

Source and target domains have a lot of overlapping features (domains share the same/similar support)

Instance-based Transfer Learning Approaches

Case I	Case II
Problem Setting	Problem Setting
Given $\mathbf{D}_S = \{x_{S_i}, y_{S_i}\}_{i=1}^{n_S}, \ \mathbf{D}_T = \{x_{T_i}\}_{i=1}^{n_T},$	Given $\mathbf{D}_S = \{x_{S_i}, y_{S_i}\}_{i=1}^{n_S},$
Learn f_T , s.t. $\sum \epsilon(f_T(x_{T_i}), y_{T_i})$ is small,	$\mathbf{D}_T = \{x_{T_i}, y_{T_i}\}_{i=1}^{n_T}, \ n_T \ll n_S,$
	Learn f_T , s.t. $\epsilon(f_T(x_{T_i}), y_{T_i})$ is small, and f_T has good generalization on unseen x_T^* .
where y_{T_i} is unknown.	f_T has good generalization on unseen x_T^* .
Assumption	Assumption
• $\mathcal{Y}_S = \mathcal{Y}_T$, and $P(Y_S X_S) = P(Y_T X_T)$,	
• $\mathcal{X}_S \approx \mathcal{X}_T$,	but $f_S \neq f_T (P_S(y x) \neq P_T(y x))$.
• $P(X_S) \neq P(X_T).$	19

Instance-based Approaches Case I

Instance-based Approaches Case I (cont.)

If $P_S(x,y) = P_T(x,y)$

Instance-based Approaches Case I (cont.)

Assumption: $\{P_S(x) \neq P_T(x), P_S(y|x) = P_T(y|x)\} \Rightarrow P_S(x,y) \neq P_T(x,y)$

$$\theta^* = \arg \min \mathbb{E}_{(x,y)\sim P_S} \left[\frac{P_T(x,y)}{P_S(x,y)} l(x,y,\theta) \right]$$
$$= \arg \min \mathbb{E}_{(x,y)\sim P_S} \left[\frac{P_T(x)P_T(y|x)}{P_S(x)P_S(y|x)} l(x,y,\theta) \right]$$
$$= \arg \min \mathbb{E}_{(x,y)\sim P_S} \left[\frac{P_T(x)}{P_S(x)} l(x,y,\theta) \right]$$

Denote $\beta(x) = \frac{P_T(x)}{P_S(x)}$, $\theta^* = \arg \min \sum_{i=1}^{n_S} \beta(x_{S_i}) l(x_{S_i}, y_{S_i}, \theta) + \lambda \Omega(\theta)$

Instance-based Approaches Case I (cont.)

How to estimate $\beta(x) = \frac{P_T(x)}{P_S(x)}$? A simple solution is to first estimate $P_T(x)$, $P_S(x)$, respectively, and calculate $\frac{P_T(x)}{P_G(x)}$. An alterative solution is to estimate $\frac{P_T(x)}{P_S(x)}$ directly. Correcting Sample Selection Bias / Covariate Shift [Quionero-Candela, etal, Data Shift in Machine Learning, MIT Press 2009]

Instance-based Approaches Correcting sample selection bias

• Imagine a *rejection* sampling process, and view the source domain as samples from the target domain

Assumption: sample selection bias is caused by the data generation process 24

Instance-based Approaches Correcting sample selection bias (cont.)

• The distribution of the selector variable maps the target onto the source distribution

[Zadrozny, ICML-04]

25

Label instances from the source domain with label 1
 Label instances from the target domain with label 0
 Train a binary classifier

Instance-based Approaches Kernel mean matching (KMM)

Maximum Mean Discrepancy (MMD)

Given $\mathbf{X}_S = \{x_{S_i}\}_{i=1}^{n_S}$, $\mathbf{X}_T = \{x_{T_i}\}_{i=1}^{n_T}$, drown from $P_S(x)$ and $P_T(x)$, respectively,

$$\text{Dist}(P(X_S), P(X_T)) = \left\| \frac{1}{n_S} \sum_{i=1}^{n_S} \Phi(x_{S_i}) - \frac{1}{n_T} \sum_{j=1}^{n_T} \Phi(x_{T_j}) \right\|_{\mathcal{H}}$$

[Alex Smola, Arthur Gretton and Kenji Kukumizu, ICML-08 tutorial]

Instance-based Approaches Kernel mean matching (KMM) (cont.)

[Huang etal., NIPS-06]

$$\underset{\beta}{\operatorname{arg\,min}} \quad \left\| \frac{1}{n_S} \sum_{i=1}^{n_S} \beta(x_{S_i}) \Phi(x_{S_i}) - \frac{1}{n_T} \sum_{j=1}^{n_T} \Phi(x_{T_j}) \right\|$$

s.t $\beta(x_{S_i}) \in [0, B] \text{ and } \left| \frac{1}{n_S} \sum_{i=1}^{n_S} \beta(x_{S_i}) - 1 \right| \le \epsilon.$

Instance-based Approaches Direct density ratio estimation

[Sugiyama etal., NIPS-07, Kanamori etal., JMLR-09]

Recall $\beta(x) = \frac{P_T(x)}{P_S(x)}$

Let
$$\widetilde{\beta}(x) = \sum_{\ell=1}^{b} \alpha_{\ell} \psi_{\ell}(x)$$
, and denote $\widetilde{P}_{T}(x) = \widetilde{\beta}(x) P_{S}(x)$
KL divergence loss
arg min KL[$P_{T}(x)$ || $\widetilde{P}_{T}(x)$] arg min $\int_{X_{S} \bigcup X_{T}} \left(\widetilde{\beta}(x) - \beta(x)\right)^{2} P_{S}(x) dx$
[Sugiyama *etal.*, NIPS-07] [Kanamori *etal.*, JMLR-09]

Instance-based Approaches Case II

- $\mathcal{Y}_S = \mathcal{Y}_T$, but $f_S \neq f_T \ (P_S(y|x) \neq P_T(y|x))$.
- Intuition: Part of the labeled data in the source domain can be reused in the target domain after re-weighting

Instance-based Approaches Case II (cont.)

TrAdaBoost [Dai *etal* ICML-07]
 For each boosting iteration,
 Use the same strategy as AdaBoost to update the weights of target domain data.
 Use a new mechanism to decrease the weights of misclassified source domain data.

Feature-based Transfer Learning Approaches

When source and target domains only have some overlapping features. (lots of features only have support in either the source or the target domain)

Feature-based Transfer Learning Approaches (cont.)
How to learn φ ?
Solution 1: Encode application-specific knowledge to learn the transformation.

Solution 2: General approaches to learning the transformation.

Feature-based Approaches Encode application-specific knowledge

Video Games
(2) A very good game! It is
action packed and full of
excitement. I am very much
hooked on this game.
(4) Very realistic shooting
action and good plots. We
played this and were hooked .
(6) The game is so boring . I
am extremely unhappy and will
probably never_buy UbiSoft
again.

Feature-based Approaches

Encode application-specific knowledge (cont.)

Feature-based Approaches

Encode application-specific knowledge (cont.)

Electronics	Video Games
(1) Compact ; easy to operate;	(2) A very good game! It is
very good picture quality;	action packed and full of
looks sharp!	excitement. I am very much
	hooked on this game.
(3) I purchased this unit from	(4) Very realistic shooting
Circuit City and I was very	action and good plots. We
<i>excited</i> about the quality of the	played this and were hooked .
picture. It is really <i>nice</i> and	
sharp.	
(5) It is also quite blurry in	(6) The game is so boring . I
very dark settings. I will	am extremely <i>unhappy</i> and
Pagain.	will probably never_buy
	UbiSoft again.

Feature-based Approaches Encode application-specific knowledge (cont.)

- Three different types of features
 - Source domain (*Electronics*) specific features, e.g., compact, sharp, blurry
 - Target domain (Video Game) specific features, e.g., hooked, realistic, boring
 - Domain independent features (pivot features), e.g., good, excited, nice, never_buy

Feature-based Approaches Encode application-specific knowledge (cont.)

- ➢ How to identify *pivot* features?
 - Term frequency on both domains
 - Mutual information between features and labels (source domain)
 - Mutual information on between features and domains
- ➢ How to utilize pivots to *align* features across domains?
 Structural Correspondence Learning (SCL) [Diltzer et al.
 - Structural Correspondence Learning (SCL) [Biltzer *etal*. EMNLP-06]
 - Spectral Feature Alignment (SFA) [Pan etal. WWW-10]

Feature-based Approaches Structural Correspondence Learning (SCL)

> Intuition

Use *pivot* features to construct *pseudo* tasks that related to target classification task

- Model correlations between *pivot* features and other features using multi-task learning techniques
- Discover new shared features by exploiting the feature correlations

Structural Correspondence Learning Algorithm

- ► Identify *P pivot* features
- Build P classifiers to predict the pivot features from remaining features
- Discover shared feature subspace
 - Compute top *K eigenvectors*
 - Project original features into eigenvectors to derive new shared features
- Train classifiers on the source using *augmented* features (original features + new features)

Feature-based Approaches Spectral Feature Alignment (SFA)

> Intuition

Use a *bipartite* graph to model the correlations between *pivot* features and other features
 Discover new shared features by applying *spectral clustering* techniques on the graph

Spectral Feature Alignment (SFA)

If two *domain-specific* words have connections to more common *pivot* words in the graph, they tend to be aligned or clustered together with a higher probability.
 If two *pivot* words have connections to more common *domain-specific* words in the graph, they tend to be aligned together with a higher probability.

 I^2R

Spectral Feature Alignment (SFA) Derive new features (cont.)

Spectral Feature Alignment (SFA) Algorithm

- ► Identify *P pivot* features
- Construct a *bipartite* graph between the pivot and remaining features.
- Apply spectral clustering on the graph to derive new features
- Train classifiers on the source using *augmented* features (original features + new features)

Feature-based Approaches General approaches

- Learning features by minimizing distance between distributions
- Learning features inspired by multi-task learning
- Learning features inspired by self-taught learning

Feature-based Approaches

Transfer Component Analysis [Pan etal., IJCAI-09, TNN-11]

Learning φ by only minimizing distance between distributions may map the data onto noisy factors.

Main idea: the learned φ should map the source and target domain data to the latent space spanned by the factors which can reduce domain difference and preserve original data structure.

High level optimization problem

 $\min_{\varphi} \operatorname{Dist}(\varphi(\mathbf{X}_S), \varphi(\mathbf{X}_T)) + \lambda \Omega(\varphi)$

s.t. constraints on $\varphi(\mathbf{X}_S)$ and $\varphi(\mathbf{X}_T)$

Recall: Maximum Mean Discrepancy (MMD)

Given $\mathbf{X}_S = \{x_{S_i}\}_{i=1}^{n_S}$, $\mathbf{X}_T = \{x_{T_i}\}_{i=1}^{n_T}$, drown from $P_S(x)$ and $P_T(x)$, respectively,

$$\text{Dist}(P(X_S), P(X_T)) = \left\| \frac{1}{n_S} \sum_{i=1}^{n_S} \Phi(x_{S_i}) - \frac{1}{n_T} \sum_{j=1}^{n_T} \Phi(x_{T_j}) \right\|_{\mathcal{H}}$$

$$\begin{aligned} \operatorname{Dist}(\varphi(\mathbf{X}_{S}),\varphi(\mathbf{X}_{T})) &= \left\| \mathbb{E}_{x \sim P_{T}(x)}[\Phi(\varphi(x))] - \mathbb{E}_{x \sim P_{S}(x)}[\Phi(\varphi(x))] \right\| \\ &\approx \left\| \frac{1}{n_{S}} \sum_{i=1}^{n_{S}} \Phi(\varphi(x_{S_{i}})) - \frac{1}{n_{T}} \sum_{i=1}^{n_{T}} \Phi(\varphi(x_{T_{i}})) \right\| \end{aligned}$$

$$\begin{aligned} \operatorname{Assume} \Psi &= \Phi \circ \varphi \text{ a RKHS, with kernel } k(x_{i}, x_{j}) = \Psi(x_{i})^{\top} \Psi(x_{j}) \end{aligned}$$

$$\begin{aligned} \operatorname{Dist}(\varphi(\mathbf{X}_{S}), \varphi(\mathbf{X}_{T})) &= \operatorname{tr}(KL) \end{aligned}$$

$$K &= \begin{bmatrix} K_{S,S} & K_{S,T} \\ K_{T,S} & K_{T,T} \end{bmatrix} \in \mathbb{R}^{(n_{S}+n_{T}) \times (n_{S}+n_{T})}, L_{ij} = \begin{cases} \frac{1}{n_{S}^{2}} & x_{i}, x_{j} \in X_{S}, \\ \frac{1}{n_{T}^{2}} & x_{i}, x_{j} \in X_{T}, \\ -\frac{1}{n_{S}n_{T}} & \operatorname{otherwise.} \end{cases} \end{aligned}$$

➤ The kernel function can be a highly nonlinear function of *\varphi*➤ A direct optimization of minimizing the quantity w.r.t. *\varphi* can get stuck in poor local minima

Low-dimensional constructions of $\mathbf{X}_S, \ \mathbf{X}_T \Rightarrow \text{PCA on } K$

- It is a SDP problem, expensive!
- It is transductive, cannot generalize on unseen instances!
- PCA is post-processed on the learned kernel matrix, which may potentially discard useful information.

An illustrative example Latent features learned by PCA and TCA

Feature-based Approaches Multi-task Feature Learning

General Multi-task Learning Setting

Given
$$\mathbf{D}_S = \{x_{S_i}, y_{S_i}\}_{i=1}^{n_S}, \ \mathbf{D}_T = \{x_{T_i}, y_{T_i}\}_{i=1}^{n_T},$$

where n_S and n_T are small,

Learn
$$f_S, f_T$$
, s.t. $\sum_{t \in \{S,T\}} \sum_i \epsilon(f_t(x_{t_i}), y_{t_i})$ is small.

Assumption: If tasks are related, they should share some good common features.

Goal: Learn a low-dimensional representation shared across related tasks.

Feature-based Approaches Multi-task Feature Learning (cont.)

Assume
$$f(x) = \langle \theta, (U^{\top}x) \rangle = \theta^{\top}(U^{\top}x)$$
, where $\theta \in \mathbb{R}^{k}, x \in \mathbb{R}^{m}, U \in \mathbb{R}^{m \times k}$
 $\{\Theta^{*}, U^{*}\} = \arg \min \sum_{t \in \{S,T\}} \sum_{i=1}^{n_{t}} l(U^{\top}x_{t_{i}}, y_{t_{i}}, \theta_{t}) + \lambda_{1}\Omega \bigoplus_{i=1}^{n_{t}} f_{i}$
s.t. constraints on U . $\Theta = [\theta_{S}, \theta_{T}] \in \mathbb{R}^{k \times 2}$
 U is full rank $(U \in \mathbb{R}^{m \times k}, k = m), \Theta$ is sparse. [Argyriou *et al.*, NIPS-07]
 U is low rank $(U \in \mathbb{R}^{m \times k}, k \ll m)$. [Ando and Zhang, JMLR-05]
[Ji *et al*, KDD-08]

Feature-based Approaches Self-taught Feature Learning

Intuition: There exist some higher-level features that can help the target learning task even only a few labeled data are given.

> Steps:

- 1) Learn higher-level features from a lot of unlabeled data.
- 2) Use the learned higher-level features to represent the data of the target task.
- 3) Training models from the new representations of the target task with corresponding labels.

Feature-based Approaches Self-taught Feature Learning

How to learn higher-level features
 Sparse Coding [Raina etal., 2007]
 Deep learning [Glorot *etal.*, 2011]

Parameter-based Transfer Learning Approaches

Motivation: A well-trained model θ_S^* has learned a lot of structure. If two tasks are related, this structure can be transferred to learn θ_T^* .

Parameter-based Approaches Multi-task Parameter Learning

Assumption:

If tasks are related, they may share similar parameter vectors. For example, [Evgeniou and Pontil, KDD-04]

Parameter-based Approaches Multi-task Parameter Learning (cont.)

Relational Transfer Learning Approaches

Motivation: If two relational domains (data is non-i.i.d) are related, they may share some similar relations among objects. These relations can be used for knowledge transfer across domains.

Relational Transfer Learning Approaches (cont.)

[Mihalkova etal., AAAI-07, Davis and Domingos, ICML-09]

Academic domain (source)

Movie domain (target)

Relational Approaches

Relational Adaptive bootstraPping [Li etal., ACL-12]

Task: sentiment summarization

> What is the opinion expressed on?

> To construct lexicon of *topic* or *target* words

≻ How is the opinion expressed?

To construct lexicon of *sentiment* words

Sentiment lexicon (camera)

great, amazing, light recommend, excellent, etc. artifacts, noise, never but, boring, etc.

Topic lexicon (camera)

camera, product, screen, photo, size, weight, quality, price, memory, etc.

Relational Approaches

Relational Adaptive bootstraPping (RAP) (cont.)

Reviews on cameras

The **camera** is **great**. It is a very **amazing product**. I highly recommend this camera. **Photos** had some **artifacts** and **noise**.

Reviews on movies

This movie has good script, great casting, excellent acting. This **movie** is so **boring**. The **Godfather** was the most **amazing movie**. The movie is excellent.

Relational Approaches RAP (cont.)

Bridge between cross-domain sentiment words
 Domain independent (general) sentiment words

Bridge between cross-domain topic words

Relational Approaches RAP (cont.)

Bridge between cross-domain topic words

- Syntactic structure between topic and sentiment

Some Advanced Research Issues in Transfer Learning

How to transfer knowledge across heterogeneous feature spaces

> Active learning meets transfer learning

Transfer learning from multiple sources

Reference

- [Thorndike and Woodworth, The Influence of Improvement in one mental function upon the efficiency of the other functions, 1901]
- [Taylor and Stone, Transfer Learning for Reinforcement Learning Domains: A Survey, JMLR 2009]
- ▶ [Pan and Yang, A Survey on Transfer Learning, IEEE TKDE 2009]
- [Quionero-Candela, *etal*, Data Shift in Machine Learning, MIT Press 2009]
- [Biltzer *etal.*. Domain Adaptation with Structural Correspondence Learning, *EMNLP* 2006]
- [Pan *etal.*, Cross-Domain Sentiment Classification via Spectral Feature Alignment, WWW 2010]
- [Pan *etal.*, Transfer Learning via Dimensionality Reduction, AAAI 2008]

Reference (cont.)

- [Pan *etal.*, Domain Adaptation via Transfer Component Analysis, IJCAI 2009]
- [Evgeniou and Pontil, Regularized Multi-Task Learning, KDD 2004]
- [Zhang and Yeung, A Convex Formulation for Learning Task Relationships in Multi-Task Learning, UAI 2010]
- [Agarwal *etal*, Learning Multiple Tasks using Manifold Regularization, NIPS 2010]
- [Argyriou etal., Multi-Task Feature Learning, NIPS 2007]
- [Ando and Zhang, A Framework for Learning Predictive Structures from Multiple Tasks and Unlabeled Data, JMLR 2005]
- [Ji *etal*, Extracting Shared Subspace for Multi-label Classification, KDD 2008]

Reference (cont.)

- [Raina *etal.*, Self-taught Learning: Transfer Learning from Unlabeled Data, ICML 2007]
- ▶ [Dai *etal.*, Boosting for Transfer Learning, ICML 2007]
- [Glorot *etal.*, Domain Adaptation for Large-Scale Sentiment Classification: A Deep Learning Approach, ICML 2011]
- [Davis and Domingos, Deep Transfer vis Second-order Markov Logic, ICML 2009]
- [Mihalkova *etal.*, Mapping and Revising Markov Logic Networks for Transfer Learning, AAAI 2007]
- [Li *etal.*, Cross-Domain Co-Extraction of Sentiment and Topic Lexicons, ACL 2012]

Reference (cont.)

- Sugiyama *etal.*, Direct Importance Estimation with Model Selection and Its Application to Covariate Shift Adaptation, NIPS 2007]
- [Kanamori *etal.*, A Least-squares Approach to Direct Importance Estimation, JMLR 2009]
- [Cristianini *etal.*, On Kernel Target Alignment, NIPS 2002]
- [Huang *etal.*, Correcting Sample Selection Bias by Unlabeled Data, NIPS 2006]
- [Zadrozny, Learning and Evaluating Classifiers under Sample Selection Bias, ICML 2004]

Thank You

Selected Applications of Transfer Learning

Qiang Yang and Sinno J. Pan 2013 PAKDD Tutorial Brisbane, Australia

Part I. Cross Domain Transfer Learning for Activity Recognition

- Vincent W. Zheng, Derek H. Hu and Qiang Yang. <u>Cross-Domain Activity</u> <u>Recognition</u>. In *Proceedings of the 11th International Conference on Ubiquitous Computing* (**Ubicomp-09**), Orlando, Florida, USA, Sept.30-Oct.3, 2009.
- Derek Hao Hu, Qiang Yang. <u>Transfer Learning for Activity Recognition via</u> <u>Sensor Mapping.</u> In Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI-11), Barcelona, Spain, July 2011

Demo

• Annotation

eHealth Demo

eHealth demo

eHealth demo

Demo

• <u>Recognition</u>

eHealth demo

Your activity :	Taking Rest	
R	ecognize activity	

Real-time activity recognition

Demo

• **Profiling**

eHealth demo

Key Problem: Recognizing Actions and Context (Locations)

1. Cross-Domain Activity Recognition [Zheng, Hu, Yang: UbiComp-2009, PCM-2011]

- Challenge:
 - Some activities without data (partially labeled)
- Cross-domain activity recognition
 - Use other activities with available labeled data

Making coffee

Happen in kitchen

- Use cup, pot
- . .

Making tea

System Workflow

Calculating Activity Similarities

- How similar are two activities?
 - Use Web search results
 - TFIDF: Traditional IR similarity metrics (cosine similarity)
 - Example
 - Mined similarity between the activity "sweeping" and "vacuuming", "making the bed", "gardening"

Datasets: MIT PlaceLab

http://architecture.mit.edu/house_n/placelab.html

- MIT PlaceLab Dataset (PLIA2) [Intille et al. Pervasive 2005]
- Activities: Common household activities

Datasets: Intel Research Lab

- Intel Research Lab [Patterson, Fox, Kautz, Philipose, ISWC2005]
 - Activities Performed:
 11 activities
 - Sensors
 - RFID Readers & Tags
 - Length:
 - 10 mornings

- 1 Using the bathroom
- 2 Making oatmeal
- 3 Making soft-boiled eggs
- 4 Preparing orange juice
- 5 Making coffee
- 6 Making tea
- 7 Making or answering a phone call
- 8 Taking out the trash
- 9 Setting the table
- 10 Eating breakfast
- 11 Clearing the table

Picture excerpted from [Patterson, Fox, Kautz, Philipose, ISWC2005].

Cross-Domain AR: Performance

	Accuracy with Cross Domain Transfer	# Activities (Source Domain)	# Activities (Target Domain)	Baseline (Random Guess)	Supervised (Upper bound)
Intel Research Lab Dataset	63.2%	5	6	16.7%	78.3%
Amsterdam Dataset	65.8%	4	3	33.3%	72.3%
MIT Dataset (Cleaning to Laundry)	58.9%	13	8	12.5%	-
MIT Dataset (Cleaning to Dishwashing)	53.2%	13	7	14.3%	-

 Activities in the source domain and the target domain are generated from ten random trials, mean accuracies are reported.

Derek Hao Hu and Qiang Yang, IJCAI 2011

Proposed Approach

• Final goal: Estimater,)

- We ha $p(\mathbf{y_t}|\mathbf{x_t}) = \sum_{\mathbf{c}^{(i)} \in \mathcal{L}_s} p(\mathbf{c}|\mathbf{x_t}) \cdot p(\mathbf{y_t}|\mathbf{c})$

$$\begin{array}{c|c} - p(\mathbf{y_t}|\mathbf{x_t}) \approx p(\hat{\mathbf{c}}|\mathbf{x_t}) \cdot p(\mathbf{y_t}|\hat{\mathbf{c}}) & (\hat{\mathbf{c}} = \arg \max_{\mathbf{c} \in \mathcal{L}_s} p(\mathbf{c}|\mathbf{x_t})) \, \mathbf{e}: \\ \hline \\ \text{Feature Transfer} & \text{Label Transfer} \end{array}$$

Experiments

- Datasets
 - UvA dataset [van Kasteren et al. Ubicomp 2008]
 - MIT Placelab (PLIA1) dataset [Intille et al. Ubicomp 2006]
 - Intel Research Lab dataset [Patterson et al. ISWC 2005]
- Baseline
 - Unsupervised Activity Recognition Algorithm [Wyatt et al. 2005]
- Different sensors for different datasets

Experiments: Different Feature & Label Spaces

K	$MIT \rightarrow UvA Acc(Var)$
K = 5	59.8% (4.2%)
K = 10	57.5% (4.1%)
K = 15	51.0% (4.8%)
K = 20	41.0% (4.1%)
Unsupervised	47.3%(4.1%)

Table 3: Algorithm performance of transferring knowledgefrom MIT PLIA1 to UvA dataset

K	$MIT \rightarrow Intel Acc(Var)$
K = 5	60.5% (4.2%)
K = 10	61.2% (3.8%)
K = 15	53.2% (4.1%)
K = 20	42.0% (2.5%)
Unsupervised	42.8%(3.8%)

Table 4: Algorithm performance of transferring knowledgefrom MIT PLIA1 to Intel dataset

Source: MIT
 PLIA1 dataset
 Target: UvA
 (Intel) datasets

Part II

- Source Free Transfer Learning
- Evan Wei Xiang, Sinno Jialin Pan, Weike Pan, Jian Su and Qiang Yang. <u>Source-Selection-Free Transfer Learning.</u> In Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI-11), Barcelona, Spain, July 2011.

Source-Selection free Transfer Learning

Evan Xiang, Sinno Pan, Weike Pan, Jian Su, Qiang Yang

Transfer Learning

Where are the "right" source data?

Outline of Source-Selection-Free Transfer Learning (SSFTL)

- Stage 1: Building base models
- Stage 2: Label Bridging via Laplacian Graph Embedding
- Stage 3: Mapping the target instance using the base classifiers & the projection matrix
- Stage 4: Learning a matrix W to directly project the target instance to the latent space
- Stage 5: Making predictions for the incoming test data using W

SSFTL – Building base models

From the taxonomy of the online information source, we can **"Compile**" a lot of base classification models

SSFTL – Label Bridging via Laplacian Graph Embedding

Problem

However, the label spaces of the based classification models and the target task can be different

The **relationships** between labels, e.g., similar or dissimilar, can be represented by the **distance** between their corresponding prototypes in the latent space, e.g., close to or far away from each other.

SSFTL – Mapping the target instance using the base classifiers & the projection matrix V

SSFTL – Learning a matrix W to directly project the target instance to the latent space

SSFTL – Making predictions for the incoming test data

Experiments - Datasets

* Building Source Classifiers with Wikipedia

- ✤ 3M articles, 500K categories (mirror of Aug 2009)
- ✤ 50, 000 pairs of categories are sampled for source models

* Building Label Graph with Delicious

800-day historical tagging log (Jan 2005 ~ March 2007)
 50M tagging logs of 200K tags on 5M Web pages

Benchmark Target Tasks

- 20 Newsgroups (190 tasks)
- Google Snippets (28 tasks)
- ✤ AOL Web queries (126 tasks)
- ✤AG Reuters corpus (10 tasks)

SSFTL - Building base classifiers Parallelly using MapReduce

Table 1: Comparison results under varying numbers of labeled data in the target task (accuracy in %).

Detect		0 5			10			20			
Dataset	RG	SSFTL	SVM	TSVM	SSFTL	SVM	TSVM	SSFTL	SVM	TSVM	SSFTL
20NG	50.0	80.3	69.8	75.7	80.6	72.5	81.0	81.6	79.1	83.7	84.5
Google	50.0	72.5	62.1	69.7	73.4	64.5	73.2	75.7	67.3	73.8	80.3
AOL	50.0	71.0	72.1	74.1	74.3	73.7	76.8	77.7	79.2	77.8	80.7
Reuters	50.0	72.7	69.7	63.3	74.3	75.9	63.7	76.9	79.5	66.7	80.1

Unsupervised SSFTL

Our regression model

Semi-supervised SSFTL

$$\min_{\mathbf{W}} \Omega_{\mathcal{D}_{T}^{\ell}}(\mathbf{W}) + \lambda_{1} ||\mathbf{W}||_{F}^{2} + \lambda_{2} \Omega_{\mathcal{D}_{T}^{u}}(\mathbf{W})$$

-Parameter setttings-Source models: 5,000 Unlabeled target data: 100% lambda_2: 0.01

Table 2: Comparison results on varying numbers of source classifiers (accuracy in %).

Dataset	Number of source classifiers for SSFTL								
Dataset	250	500	1 K	2K	5K	10K	20K		
20NG	76.3	78.2	80.3	82.5	84.5	85.1	85.6		
Google	70.6	73.1	76.6	78.5	80.3	80.4	80.2		
AOL	67.6	76.6	78.0	78.8	80.7	81.2	79.1		
Reuters	72.2	74.0	76.7	78.0	80.1	79.6	78.1		

For each target instance, we first aggregate its prediction on the base label space, and then project it onto the latent space

Loss on unlabeled data

Our regression model

Se label space, and the latent space $\mathbf{V'F}_{S}^{u} = \mathbf{V'}\sum_{i=1}^{\kappa} \varepsilon_{i}\mathbf{F}_{S_{i}}^{u}$ $\Omega_{\mathbf{D}_{T}^{u}}(\mathbf{W}) = \frac{1}{n-\ell} \|\mathbf{W'X}^{u} - \mathbf{V'F}_{S}^{u}\|_{F}^{2}$ $\min_{\mathbf{W}} \Omega_{\mathcal{D}_{T}^{\ell}}(\mathbf{W}) + \lambda_{1} \|\mathbf{W}\|_{F}^{2} + \lambda_{2} \Omega_{\mathcal{D}_{T}^{u}}(\mathbf{W})$

-Parameter setttings-Mode: Semi-supervised Labeled target data: 20 Unlabeled target data: 100% lambda_2: 0.01

Table 3: Comparison results on varying size of unlabeled data in the target task (accuracy in %).

Unlabeled data involved in SSFTL							
20%	40%	60%	80%	100%			
80.5	80.9	81.8	84.0	84.5			
74.5	74.9	76.4	77.9	80.3			
73.4	75.7	77.1	78.2	80.7			
75.5	77.7	77.8	78.7	80.1			
	20% 80.5 74.5 73.4	20%40%80.580.974.574.973.475.7	20%40%60%80.580.981.874.574.976.473.475.777.1	20%40%60%80%80.580.981.884.074.574.976.477.973.475.777.178.2			

Our regression model

$$\min_{\mathbf{W}} \Omega_{\mathcal{D}_{T}^{\ell}}(\mathbf{W}) + \lambda_{1} ||\mathbf{W}||_{F}^{2} + \lambda_{2} \Omega_{\mathcal{D}_{T}^{u}}(\mathbf{W})$$

-Parameter setttings-Mode: Semi-supervised Labeled target data: 20 Source models: 5,000 lambda_2: 0.01

Table 4: Overall performance of SSFTL under varying values of λ_2 (accuracy in %).

Dataset	λ_2 of SSFTL								
	0	0.001	0.01	0.1	1	10	100		
20NG	83.2	84.1	84.5	85.3	84.8	83.3	79.3		
Google	76.6	79.1	80.3	78.7	78.2	77.4	74.3		
AOL	78.3	79.5	80.7	79.1	78.8	76.3	73.4		
Reuters	75.5	78.2	80.1	78.5	76.0	72.1	68.5		

Supervised SSFTL

Semi-supervised SSFTL

Our regression model

$$\min_{\mathbf{W}} \Omega_{\mathcal{D}_{T}^{\ell}}(\mathbf{W}) + \lambda_{1} ||\mathbf{W}||_{F}^{2} + \lambda_{2} \Omega_{\mathcal{D}_{T}^{u}}(\mathbf{W})$$

-Parameter setttings-Labeled target data: 20 Unlabeled target data: 100% Source models: 5,000

Table 5: Analysis on weighted and uniform SSFTL under varying number of labeled data (accuracy in %).

Dataset	U	niform	SSF1	Ľ	We	Weighted SSFTL			
Dataset	5	10	20	30	5	10	20	30	
20NG		80.7							
Google	64.1	67.0	70.8	77.2	73.4	75.7	80.3	81.1	
AOL	69.8	71.7							
Reuters	69.7	70.3	75.5	78.8	74.3	76.9	80.1	82.6	

For each target instance, we first aggregate its prediction on the base label space, and then project it onto the latent space

Loss on unlabeled data

Our regression model

$$\mathbf{V}'\mathbf{F}_{S}^{u} = \mathbf{V}'\sum_{i=1}^{k} \varepsilon_{i}\mathbf{F}_{S_{i}}^{u}$$

$$\Omega_{\mathbf{D}_{T}^{u}}(\mathbf{W}) = \frac{1}{n-\ell} \left\| \mathbf{W}' \mathbf{X}^{u} - \mathbf{V}' \mathbf{F}_{S}^{u} \right\|_{F}^{2}$$

$$\min_{\mathbf{W}} \Omega_{\mathcal{D}_{T}^{\ell}}(\mathbf{W}) + \lambda_{1} ||\mathbf{W}||_{F}^{2} + \lambda_{2} \Omega_{\mathcal{D}_{T}^{u}}^{*}(\mathbf{W})$$

-Parameter setttings-Mode: Semi-supervised Labeled target data: 20 Source models: 5,000 Unlabeled target data: 100% lambda_2: 0.01

Related Works

Table 6: Summary of some related transfer learning works.

Transfer learning methods	Scalability	Diff. label
RSP [Shi et al., 2009]	×	\checkmark
EigenTransfer [Dai et al., 2009]	×	\checkmark
MTL-MI [Quadrianto et al., 2010]	×	\checkmark
DAM [Duan et al., 2009]	\checkmark	×
LWE [Gao et al., 2008]		×
SSFTL	\checkmark	\checkmark

Conclusion

Source-Selection-Free Transfer Learning

When the potential auxiliary data is embedded in very large online information sources

* No need for task-specific source-domain data

We compile the label sets into a graph Laplacian for automatic label bridging

***** SSFTL is highly scalable

Processing of the online information source can be done offline and reused for different tasks.

Q & A

Advance Research Topics in Transfer Learning

Wei Fan

Huawei Noah's Ark Research Lab, Hong Kong

Predictive Modeling with Heterogeneous Sources

Xiaoxiao Shi Qi Liu Wei Fan Qiang Yang Philip S. Yu

New York Times

New York Times

Why heterogeneous sources?

Real world examples

- Social Network:
 - Can various bookmarking systems help predict social tags for a new system given that their outputs (social tags) and data (documents) are different?

Real world examples

- Applied Sociology:
 - Can the suburban housing price census data help predict the downtown housing prices?

#rooms #bathrooms #windows price
5
2
12
XXX
6
3
11
XXX

#rooms#bathrooms#windowsprice214XXXXX425XXXXX

Other examples

• Bioinformatics

.

- Previous years' flu data \rightarrow new swine flu
- Drug efficacy data against breast cancer → drug data against lung cancer
- Intrusion detection
 - Existing types of intrusions → unknown types of intrusions
- Sentiment analysis
 - Review from SDM→ Review from KDD

Learning with Heterogeneous Sources

- The paper mainly attacks two subproblems:
 - Heterogeneous data distributions
 - Clustering based KL divergence and a corresponding sampling technique
 - Heterogeneous outputs (to regression problem)
 - Unifying outputs via preserving similarity.

Learning with Heterogeneous Sources

General Framework

Unifying Data Distributions

- Basic idea:
 - Combine the source and target data and perform clustering.
 - Select the clusters in which the target and source data are similarly distributed, evaluated by KL divergence.

Unifying Outputs

- Basic idea:
 - Generate initial outputs according to the regression model
 - For the instances similar in the original output space, make their new outputs closer.

• Bioinformatics data set:

Table 1: Description of the data sets (#Feature =161)

Order	Type	Size	Scale	References
1	Regression	2431	$0{\sim}99.99$	[8]
2	Regression	561	$1{\sim}127.8$	[8]
3	Regression	601	$0{\sim}100$	[8]
4	Regression	290	$2.1{\sim}98$	[15]
5	Regression	344	$0.2{\sim}98.5$	[15]
6	Classification	7443	4 classes	[10]
7	Classification	196	2 classes	[16]

Note: Some references, such as [8], refer to several data sets from different research groups

14/18

• Applied sociology data set:

Table 2: Description of the data sets (#Feature =18)

Name	Size	Scale
Newton	18	$2.47 {\sim} 21.46$
Boston Roxbury	19	$12.03{\sim}36.98$
Lynn	22	$6.58{\sim}27.71$
Boston Savin Hill	23	$15.17 {\sim} 34.02$
Cambridge	30	$1.73 {\sim} 29.53$
Somerville	15	$11.12 \sim 34.41$
South Boston	10	$3.53{\sim}18.46$
Brookline	11	$7.67{\sim}18.66$
East Boston	11	$10.29{\sim}19.01$
Quincy	11	$9.38{\sim}29.55$

Conclusions

- Problem: Learning with Heterogeneous Sources:
 - Heterogeneous data distributions
 - Heterogeneous outputs
- Solution:
 - Clustering based KL divergence help perform sampling
 - Similarity preserving output generation help unify outputs

Transfer Learning on Heterogeneous Feature Spaces via Spectral Transformatic

> Xiaoxiao Shi, Qi Liu, Wei Fan, Philip S. Yu, and Ruixin Zhu

Motivation

Standard Supervised Learning

Ehe New York Eimes

Ehe New York Eimes

- WiFi-based localization tracking [Pan et al'08]
- Collaborative Filtering [Pan et al'10]
- Activity Recognition [Zheng et al'09]
- Text Classification [Dai et al'07]
- Sentiment Classification [Blitzer et al '07]
- Image Categorization [Shi et al'10]

Issues

 Different data distributions: P(x_{train}) and P(x_{test}) are different

Chicago Tribune focuses more on Chicago local news

focuses more on global news

focuses more on scientific/objective documents

Issues

Yahoo!

Travel Updates Video

Different outputs: y_{train} and y_{test} are different Wikipedia ODP

Wiktionary:Topics	dmoz open directory pro	oject	In partnership with Aol Search.	YAHO	\bigcirc				
This page contains lists of major topical categories on	about dmoz dmoz blog suggest URL help link editor login My Yahoo!								
Business		YAHOO! SITES 🌼 Edit							
				🖂 Mail	>				
Culture	Arts	<u>Business</u>	Computers	🚘 Autos					
	Movies, Television, Music	Jobs, Real Estate, Investing	Internet, Software, Hardware	🚱 Dating	>				
	Games	<u>Health</u>	Home	Deals					
Geography	Video Games, RPGs, Gambling	Fitness, Medicine, Alternative	Family, Consumers, Cooking	🕖 Finance (Dow Jones 🕆	b >				
	Kids and Teens	News	Recreation	Games	>				
History	Arts, School Time, Teen Life	Media, Newspapers, Weather	Travel, Food, Outdoors, Humor	Horoscopes	>				
	Reference	Regional	Science	m HotJobs	>				
Language	Maps, Education, Libraries	US, Canada, UK, Europe	Biology, Psychology, Physics	🖃 Lifestyle					
	Shopping	Society	Sports	😜 Messenger	>				
Nederine	Clothing, Food, Gifts	People, Religion, Issues	Baseball, Soccer, Basketball	Movies	>				
Nature	World			💓 omg!					
		, Français, Italiano, 日本語, Nederl	ands, Polski, Pyccxий, Svenska	Shopping	>				
People				Sports	>				

Issues

- Different feature spaces (the focus on the paper)
 - Drug efficacy tests:

To

- Physical properties
 - roperties

- Image Classification
 - Wavelet features
 - Color histogram

Unify different feature spaces

- Different number of features; different meanings of the features, no common feature, no overlap.
- Projection-based approach HeMap
 - Find a projected space where (1) the source and target data are similar in distribution; (2) the original

Unify different feature spaces via HeMap Optimization objective of HeMap:

$$\min_{\mathbf{B_T}, \mathbf{B_S}} \ell(\mathbf{B_T}, \mathbf{T}) + \ell(\mathbf{B_S}, \mathbf{S}) + \beta \cdot \mathbf{D}(\mathbf{B_T}, \mathbf{B_S})$$
(1)
$$\ell(\mathbf{B_T}, \mathbf{T}) = \|\mathbf{B}\ell(\mathbf{B_S}, \mathbf{S}) = \|\mathbf{D}(\mathbf{B_T}, \mathbf{B_S}) = \frac{1}{2} (\ell(\mathbf{B_T}, \mathbf{S}) + \ell(\mathbf{B_S}, \mathbf{T}))$$
The linear properties of the linear properties of the projected data

where $\mathbf{B}_{\mathbf{T}} \in \mathbb{R}^{r \times k}, \mathbf{B}_{\mathbf{S}} \in \mathbb{R}^{q \times k}$ are the projected matrices of \mathbf{T} and \mathbf{S} respectively.

Unify different feature spaces via HeMap

With some derivations, the objective can be reformulated as (more details can be found in the paper):

Theorem 1: The minimization problem in Eq. (4) is equivalent to the following maximization problem:

$$\min_{\mathbf{B}_{\mathbf{T}}^{\top}\mathbf{B}_{\mathbf{T}}=\mathbf{I}, \mathbf{B}_{\mathbf{S}}^{\top}\mathbf{B}_{\mathbf{S}}=\mathbf{I}} G = \max_{\mathbf{B}^{\top}\mathbf{B}=\mathbf{I}} \mathbf{tr}(\mathbf{B}^{\top}\mathbf{A}\mathbf{B})$$
(6)

where

$$\mathbf{B} = \begin{bmatrix} \mathbf{B}_{\mathbf{T}} \\ \mathbf{B}_{\mathbf{S}} \end{bmatrix}, \ \mathbf{A} = \begin{bmatrix} \mathbf{A}_1 & \mathbf{A}_2 \\ \mathbf{A}_3 & \mathbf{A}_4 \end{bmatrix}.$$
(7)

 $\mathbf{A}_1 = 2\mathbf{T}\mathbf{T}^\top + \frac{\beta^2}{2}\mathbf{S}\mathbf{S}^\top, \mathbf{A}_4 = \frac{\beta^2}{2}\mathbf{T}\mathbf{T}^\top + 2\mathbf{S}\mathbf{S}^\top$ $\mathbf{A}_2 = \mathbf{A}_3^\top = \beta(\mathbf{S}\mathbf{S}^\top + \mathbf{T}\mathbf{T}^\top)$

Algorithm flow of HeMap

Generalized HeMap to handle heterogeneous data (different distributions, outputs and feature spaces)

Unify different distributions and outputs

- Unify different distributions
 - Clustering based sample selection [Shi etc al,09]
- Unify different outputs

Г

$$p(y|\mathbf{x}) = \sum_{v} (p(v|\mathbf{x})p(y|v))$$
(11)

where x is the data to be predicted; y is the target label; and v denotes the output from the source task.

Generalization bound

Theorem 4: Let \mathcal{H} be a a hypothesis space. Let \mathbf{T} be unlabeled samples of size r. Let \mathbf{S} be a labeled sample of size q generated by drawing ϑq points from target data and $(1 - \vartheta)q$ points from source data. If $\hat{h} \in \mathcal{H}$ is the empirical minimizer of the error on \mathbf{S} and $h^* = \min_{h \in \mathcal{H}} \epsilon(h)$ is the target risk minimizer, then with probability at least $1 - \delta$ (over the choice of the samples),

$$\begin{aligned} \epsilon(\hat{h}) &\leq \epsilon(h^*) + 2\sqrt{\frac{\alpha^2}{\beta} + \frac{(1-\alpha)^2}{1-\beta}}\sqrt{\frac{g(\hat{h})\log(2q) - \log\delta}{2q}} \\ &+ 2(1-\alpha)\Big(\frac{1}{2}\mathrm{d}(\mathbf{T},\mathbf{S}) + 4\sqrt{\frac{2g(\hat{h})\log r + \log\frac{4}{\delta}}{r}} + \xi\Big) \end{aligned}$$

 α an β are domain-specific parameters; $g(\hat{h})$ is model complexity

Principle I: minimize the difference between target and source datasets $\xi = \min_{h \in \mathcal{H}} \epsilon_{\mathbf{T}}(h) + \epsilon_{\mathbf{S}}(h)$

Principle II: minimize the combined expected error by maintaining the original structure (minimize projection error)

- Drug efficacy prediction
 - The dataset is collected by the College of Life Science and Biotechnology of Tongji University, China. It is to predict the efficacy of drug compounds against certain cell lines.
 - The data are generated in two different feature spaces
 - general descriptors: refer to physical properties of compounds
 - drug-like index: refer to simple **topological** indices of compounds.

(a) Target is data set 1; source is data set 2

(e) Target is data set 5; source is data set 6

(b) Target is data set 2; source is data set 1

data set 5

(c) Target is data set 3; source is data set 4

data set 8

(d) Target is data set 4; source is data set 3

(f) Target is data set 6; source is (g) Target is data set 7; source is (h) Target is data set 8; source is data set 7

• Image classification

and Cactus

and Bonsai

(a) Target is Cartman and Bon- (b) Target is Homer Simpson (c) Target is Homer Simpson (d) Target is Superman and CD; sai; source is Homer Simpson and Cactus; source is Cartman and Coin; source is Superman source is Homer Simpson and and CD

Coin

Conclusions

- Extends the applicability of supervised learning, semi-supervised learning and transfer learning by using heterogeneous data:
 - Different data distributions
 - Different outputs
 - Different feature spaces
- Unify different feature spaces via linear projection with two principles
 - Maintain the original structure of the data
 - Maximize the similarity of the two data in the projected space

Cross Validation Framework to Choose Amongst Models and Datasets for Transfer Learning

> Erheng Zhong[¶], Wei Fan[‡], Qiang Yang[¶], Olivier Verscheure[‡], Jiangtao Ren[†]

Transfer Learning: What is it Definition

"source-domains" to improve "target-domain": short of labeled information.

Application

Indoor WiFi localization tracking

Application

Collaborative Filtering

R (target)

Transfer Learning: How it wo Data Selection

from Target-domain

Lots of Labled Data

Re-cast: Model and Data Selection

(1) How to select the right transfer learning algorithms?

(2) How to tune the optimal parameters?

(3) How to choose the most helpful source-domain from a large pool of datasets?

Model & Data Selection Traditional Methods

1. Analytical techniques: AIC, BIC, SRM, etc.

$$\hat{f} = \arg\min_{f} \frac{1}{n} \sum_{\mathbf{x} \in X_s} \left| P_s(y|\mathbf{x}) - P(y|\mathbf{x}, f) \right| + \Theta_f$$

2. k-fold cross validation

$$\hat{f} = \arg\min_{f} \frac{1}{k} \sum_{j=1}^{k} \sum_{(\mathbf{x},y)\in S_j} \left| P_s(y|\mathbf{x}) - P(y|\mathbf{x}, f_j) \right|$$

Model & Data Selection Issuses

 $\implies P_s(x) \neq P_t(x)$

The estimation is not consiste $\lim_{n\to\infty} (\hat{f}) \neq f^*$ Ideal $f^* = \arg\min_f \mathbf{E}_{\mathbf{x}\sim P_t(\mathbf{x})} \left| P_t(y|\mathbf{x}) - P(y|\mathbf{x}, f) \right| + \Theta_f$ Hypothesis

 $\implies P_s(y \mid x) \neq P_t(y \mid x)$

A model approximating $P_s(y|x)$ is not necessarily close to $P_t(y|x)$

The number of labeled data in target domain is limited and thus the directly estimation $P_t o f(x)$ is not reliable.

Model & Data Selection Model Selection Example

Model & Data Selection Data Selection Example Source-1

If we choose the wrong source-domain....

Density Ratio Weighting

• The selected model is an unbiased estimator to th \hat{f} ideal model f^*

Lemma 1. $\ell_w(\hat{f}) + \Theta_{\hat{f}} = \ell^*(f^*) + \Theta_{f^*}$, when $n \to \infty$ and f^* and \hat{f} belong to the same hypothesis class.

 $\ell^*(f^*)$ is the expected loss to approximate $P_t(y|\mathbf{x})$

$$\ell_w(\hat{f}) = \frac{1}{n} \sum_{\mathbf{x} \in X_s} \frac{P_t(\mathbf{x})}{P_s(\mathbf{x})} \Big| P_t(y|\mathbf{x}) - P(y|\mathbf{x}, \hat{f}) \Big|$$

 Θ_f is the model complexity

Important property to choose the right model even when P(x) and P(y|x) are different

- We adopt an existing method KMM (Huang et al'07) for density ratio weighting
- Reverse Validation to estimate $P_t(y|x) P(y|x,f)$ (next slide)

- S_i The source-domain data in i-th fold
- \overline{S}_i The remaining data
- \overline{Y}_{u}^{i} The predicted label of X_{u} in i-th fold
- \overline{Y}_{s}^{i} The predicted label of S_{i} in i-th fold
- Y_{s}^{i} The true label of S_{i} in i-th fold
- $X_u \mid X_\ell$ The unlabeled and labeled target-domain data

Properties

- The selected model is an unbiased estimator to the ideal one. [Lemma 1]
- The model selected by the proposed method has a generalization bound over target-domain data. [Theorem 1]
- The value of reverse validati $r(\mathbf{x})$ is related to the difference between true conditional probability and $mod |P(y|x, f_i) P_t(y|\mathbf{x})|$
 - The confidence of TrCV has a bound.

$$Pr\left\{-z < \frac{\varepsilon_u(f) - \varepsilon(f)}{\sqrt{\varepsilon(f) \cdot (1 - \varepsilon(f))/n}} < z\right\} \approx \lambda$$

- $\varepsilon_u(f)$ the accuracy estimated by TrCV
- $\varepsilon(f)$ the true accuracy of f
 - $z = (1 + \lambda)/2$ -th quantile point of the standard normal distribution

• Wine Quality: two subsets related to red and white variants of the Portuguese "Vinho Verde" wine.

Data Set	S	T	Description
Red-White(RW)	1599	4998	physicochemical
White- $\operatorname{Red}(WR)$	4998	1599	variables

For algorithm and parameters selection

 Reuters-21578: the primary benchmark of text categorization formed by different news with a hierarchial structure.

Data Set	S	T	Description
orgs vs. people(ope)	1016	1046	Documents
orgs vs. places(opl)	1079	1080	from different
people vs. places(pp)	1239	1210	subcategories

For algorithm and parameters selection

 SyskillWebert: the standard dataset used to test web page ratings, generated by the HTML source of web pages plus the user rating. we randomly reserve "Bands-recording artists" as source-domain and the

three others as target-domain data.

Data Set	S	T	Description
Sheep(Sp)	61	65	Web pages
Biomedical(Bl)	61	131	with different
Goats(Gs)	61	70	contents

For algorithm and parameters selection

• 20-Newsgroup: primary benchmark of text categorization similar to Reuters-21578

Data Set	S	Т	S	T
comp	windows vs. motorcycles	graphics	1596	
vs.	pc.hardware vs. baseball	vs.	1969	1957
rec	mac.hardware vs. hockey	autos	1954	
sci	crypt vs. guns	electronics	1895	
vs.	med vs. misc	vs.	1761	1924
talk	space vs. religion	$\operatorname{mideast}$	1612	

For source-domain selection

Experiment Baseline methods

- SCV: standard k-fold CV on source-domain
- TCV: standard k-fold CV on labeled data from targetdomain
- STV: building a model on the source-domain data and validating it on labeled target-domain data
- WCV: using density ratio weighting to reduce the difference of marginal distribution between two domains, but ignoring the difference in conditional probability.

$$\hat{f} = \arg\min_{f} \frac{1}{k} \sum_{j=1}^{k} \sum_{(\mathbf{x},y)\in S_{j}} \frac{P_{t}(\mathbf{x})}{P_{s}(\mathbf{x})} \left| P_{s}(y|\mathbf{x}) - P(y|\mathbf{x},f_{j}) \right|$$

Experiment Other settings

- Algorithms:
 - Naive Bayes(NB), SVM, C4.5, K-NN and NNge(Ng)
 - TrAdaBoost(TA): instances weighting [Dai et al.'07]
 - LatentMap(LM): feature transform [Xie et al.'09]
 - LWE : model weighting ensemble [Gao et al.'08]
- Evaluation: if one criterion can select the better model in the comparison, it gains a higher measure value.

$$corr = C_{|\mathcal{H}|}^2 - \sum_{f,g \in \mathcal{H}} \left[\left(\varepsilon(f) - \varepsilon(g) \right) \times \left(v(f) - v(g) \right) < 0 \right]$$

 $\varepsilon(\cdot)$ and $v(\cdot)$ The accuracy and value of criteria (e.g TrCV, SCV, etc)

 $\mathcal{C}^2_{|\mathcal{H}|}$ The number of comparisions between models

Results Algorithm Selection

Results Parameter Tuning

Method	RW	WR	ope	opl	pp	Sp	Bl	\mathbf{Gs}	RW	WR	ope	opl	pp	Sp	Bl	Gs
	Para	amete	er Tu	ınin	g (]	Late	ent	Map)	Pa	aram	eter	Tun	ing	(S)	VM)
SCV	4	5	5	5	8	4	4	6	4	7	5	4	3	7	7	8
TCV	3	3	3	5	5	4	1	2	5	4	3	4	4	4	5	5
STV	4	5	4	4	7	8	1	6	4	7	4	7	3	8	7	5
WCV	4	5	5	8	8	4	3	7	8	7	6	6	5	8	6	7
TrCV	5	7	8	8	8	5	3	7	7	8	7	8	6	8	8	8

13 win and 3 lose!

Results Source-domain Selection

Method	NB	SVM	C45	KNN	Ng	TA	LM	LWE	Pr
SCV	5	6	6	5	4	4	1	6	436
STV	2	3	4	6	2	2	3	5	371
TCV	6	5	2	4	2	5	3	4	399
WCV	5	6	6	4	3	4	3	6	442
TrCV	6	6	6	6	6	5	4	6	512

No lose!

Results Parameter Analysis

TrCV achieves the highest correlation value under different number of folds from 5 to 30 with step size 5.

Results Parameter Analysis

When only a few labeled data(< $0.4 \times |T|$) can be obtained in the target-domain, the performance of TrCV is much better than both SVT and TCV.

Conclusion

- Model and data selection when margin and conditional distributions are different between two domains.
- Key points
 - Point-1 Density weighting to reduce the difference between marginal distributions of two domains;
 - Point-2 Reverse validation to measure how well a model approximates the true conditional distribution of target-domain.
- Code and data available from the authors
 - www.weifan.info

Thanks!