
Large-scale Non-linear
Classification: Algorithms and
Evaluations

Zhuang (John) Wang, Ph.D.

IBM Global Business Services

IJCAI 2013 Tutorial, Aug. 5th, 2013

2

About the tutorialist

ÁWork for IBM Global Business Services and before for

Siemens Research

ÁResearch interests: Support Vector Machine, Large-scale

learning, Online learning, Multiple-instance learning

Á20 or so papers on JMLR, MLJ, ICML, KDD, AISTATS,é

3

Agenda

ÁOverview

ÁLarge-scale linear classification

ÁLarge-scale non-linear classification

ÁParallelism

ÁSummary

4

Á In real world, many data analytics problems are often being solved by

formulating into data classification problem

Feature1 é Feature k Label

Example 1 0.780 0.854 0.611 1.000

Example 2 0.486 0.928 0.519 0.000

é 0.677 0.467 0.064 1.000

é 0.210 0.272 0.750

é 0.799 0.100 0.579

é 0.172 0.317 0.481

é 0.966 0.551 0.344

é 0.422 0.567 0.448

é 0.100 0.407 0.300

Example n 0.885 0.255 0.113 0.000

Raw Data

Feature Extraction

Data

Classification

Evaluation

Real-world predictive analytics problem-solving
workflow

5

Big data

ÁCheap, pervasive and networked

computing devices are enhancing

our ability to collect data to an

even greater extent.

Á What is big data?

Á No clear definition.
Á A situation that exponentially grew complex data makes us
cannot easily make sense of it. To make sense of it, we need a
wide variety of technologies to tackle two difficulties: storage
and analysis.
Á Large-scale classification is a highly demanding technique
which falls into the 2nd category.

6

Á The size of datasets have been growingé

considered

large 10

years ago is

no longer

large by

current

standard.

Å The reality is far from the idealé
Á Ideal algorithm

Á Fast training & prediction;

Á Scalable

Á Nonlinear model;

Á Low memory;

Á High accuracy;

Á Easy to implement;

Á Theoretically sound;

Linear SVM Kernel SVM

Nonlinearity No Yes

Training time fast slow

Prediction fast slow

Scalability high low

Training space small large

Model size small large

The current status is é

7

Large-scale Linear Classification

8

Problem Setting

Á Training examples:

ÁGoal: train a linear classifier to separate D

{ }(,), 1,..., , , {1, 1}M

i i i iD y i N R y= = Í Í -x x

sgn(()) sgn(), where T Mf R= Íx w x w

Note: we ignore bias term in f(x) for simplicity. Bias term can be implicitly
incorporated by adding a constant feature in the data

9

Perceptron

ÁPerceptron algorithm (Rosenblatt, 1957):

1. Initialize w

2. For each example i in D

ÅDo where

3. Repeat step 2 until stopping criteria (e.g. enough iterations)

ÁComplexity: O(N) in time, O(M) in space*.

Á Theory: converge after finite steps if data is linearly separable (Novikoff,

1962)

i ia« +w w x
, if () 0

0, otherwise

i i i

i

y y f
a

<ë
=ì
í

x

*: sequentially load data by chunk

10

Perceptron (cont.)

ÁPros:

ïBoth conceptually and computationally simple

ïConstant memory consumption + online learning = scalable (to

arbitrary large data)

ÁCons:

ïFail to converge on non-linearly separable data

ïNot sufficiently accurate

ïOut of fashioné

11

Linear Support Vector Machine

ÁTrain an optimal linear classifier by solving the optimization (Cortes et al.,

1995)

Á Note: in linear case, we can explicitly work on w rather than through SVs,

which makes our life much easier!!!

()2

1

ɚ 1
min || || max 1 (),0

2

N

i i

i

y f
N =

+ -ä
w

w x

Fig. Source: http://www.ifp.illinois.edu/~yuhuang/sceneclassification.html

2

,

1
min

2

s.t. () 1

i

T

i i i

C

y

x
x

x

+

² -

ä
w

w

w x

Constrained form:

Unconstrained form:

12

Stochastic Gradient Descent for Linear SVM

Á SVM optimization

Á Train SVM using gradient descent
1. Initialize w

2. Do

3. Repeat step 3 until stopping criteria

Á SGD: approximate the exact gradient using the one on the
instantaneous objective

Á Theory: when i is i.i.d. sampled and #iterations is large, with high
probability, w converges to w* (Zhang, 2004; Shalev-Shwartz et al.,
2008)

()Obj
h
µ

« -
µ

w
w w

w

(,)InsObj i
h
µ

« -
µ

w
w w

w

()2

1

ɚ 1
min () || || max 1 (),0

2

N

i i

i

Obj y f
N =

¹ + -ä
w

w w x

()2ɚ
(,) || || max 1 (),0

2
i iInsObj i y f¹ + -w w x

13

Stochastic Gradient Descent for Linear SVM (cont.)

Á Train Linear SVM like Perceptron (Zhang, 04; Shalev-Shwartz et al., 08)

1. Initialize w

2. Randomly select an example i in D

ÅDo where

3. Repeat step 2 with enough iterations

ÁO(N) training time, O(M) training space*

(1) i ilh a« - +w w x
, if () 1

0, otherwise

i i i

i

y y fh
a

<ë
=ì
í

x

*: sequentially load data by chunk

14

Dual Coordinate Descent for Linear SVM

ÁSVM optimization in dual form

Ámaximize the dual objective by iteratively optimizing one alpha (i.e.

coordinate) at a time and keeping the rest variables fixed

ÁWhich leads the update rule:

where has closed-form solution

1
max , where

2

T T T

ij i i i jy y- =
Ŭ

1 Ŭ Ŭ QŬ Q x x

* *

i i iya=w x

()new old

i i ia a« + -w w x

ia

15

Dual Coordinate Descent for Linear SVM (cont.)

ÁTrain Linear SVM like Perceptron (Hsieh et al., 08)

1.Initialize w and

2.For each example i in D

ÅDo where

3.Repeat step 2 until stopping criteria

ÁO(N) training time, O(N+M) training space

(new old

i i i

old new

i i

a a

a a

« + -

«

w w)x
2

() 1
min max ,0 ,

|| ||

new old i i
i i

i

y f
Ca a

å õå õ-
= -æ öæ öæ ö

ç ÷ç ÷

x

x

, 1,...,old

i i Na =

16

Other popular approaches

ÁSecond-order stochastic gradient descent (Bordes et al., 2009)

ÁBundle approach (Teo et al., 2010)

ÁCutting plane approach (Joachims, 2006)

ÁMethods for L1-regularized SVM and logistic regression

ÁRefer to the survey paper ñRecent advance on large-scale linear

classificationò by Yuan et al.,

17

When data cannot fit into memory

ÁTraining time

= in-memory computation time + I/O time

ÁPrevent unnecessary I/O operation by

fully operating on in-memory data

ÁHow? Sequentially train data by chunk

(Yu et al., 2010)

ïNot for every algorithm

ïBut good for SGD and DCD

Fig. Source: http://en.wikipedia.org/wiki/Virtual_memory and Yu et al., 2011.

dataset

18

Off-the-shelf tools

ÁLiblinear (Fan et al., 2008)

ïLinear SVM, logistic regression

ïPowered by dual coordinate descent

ïWindows/Linux cmd-line tool with interfaces to many languages

ïWell maintained project

ïTrain few GB data in a matter of secs/mins

ïGood for single machine usage when data CAN/CANNOT fit into

memory

19

Empirical comparison between linear and non-linear
classification

Fig. Source: Yuan et al., 2012

20

Why is linear classifier popular?

ÁBecause it is computationally cheap and deliver comparable accuracy to

non-linear classifiers in some applications:

ïCarefully designed features already capture non-linear concepts, e.g.

computer vision applications

ïIn higher-dimensional feature spaces, data tends to be more linearly

separable, e.g. document classification (bag-of-words representation).

21

Where will the research of linear classification go?

ÁA field tend to be mature

ïA lot of good algorithms for a wide variety of practical problems

ïMany off-the-shelf tools

ÁFuture directions

ïTransfer the mature technologies to other learning scenarios.

22

Large-scale non-linear classification

23

When to use non-linear classifier?

ÁData has non-linear concepts

ÁSensitive to accuracy

24

Kernel Support Vector Machine

ÁFeature mapping

ÁSVM optimization on Dô:

ÁPrimal to dual transformation =>

2

1

ɚ 1
min || || max(1 (),0)

2

N

i i

i

y f
N =

= + -ä
w

w x

' {((),), 1,..., }i iD y i N= F =x

() Ŭ () () Ŭ (,)T

i i i i i ii i
f y y k= F F =ä äx x x x x

Kernel trick

Twhere () ()f = Fx w x

Note: w can only be implicitly represented by SVs + their coefficients
+ kernel function

Fig. Source: www.imtech.res.in.

{(,), 1,..., }i iD y i N= =x

25

Decomposition Methods

ÁSVM dual form

ÁSequential Minimal Optimization (Platt, 98)

1. Smartly select a working example i and update by solving

2. Repeat step 1 until stopping criteria

1
max , where (,)

2

s.t . , 0

T T

ij i i i j

i

Q y y k

i Ca

- =

" ¢ ¢

Ŭ
1 Ŭ Ŭ QŬ x x

i

1
max (1) , s.t. 0 ,

2i

iU U i i ii iQ C
a

a a a a
å õ
- - ¢ ¢æ ö

ç ÷
Q Ŭ

ia

Closed-form solution for
ia

26

Decomposition Methods (cont.)

ÁLibsvm (Chang and Lin, 01)

ïHighly optimized implementation of SMO (plus heuristic for fast

convergence)

ïActively-maintained open source project

ïWindows/Linux cmd-line tool and multiple language APIs

ïexact SVM solver

ïScalable for few hundreds MBôs (or <1M examplesô) low-dim data *

*: we define ñscalableò as training time less than 10hrs.

27

Decomposition Methods (cont.)

ÁLasvm (Bortes et al., 05): approximate SVM solver using online SMO

approximation

ïUsing less memory than Libsvm

ïLess accurate

ïScalable for few GBôs (or <10M examplesô) low-dim data *

ÁLasvm algorithm

ï Online step

ÅSequentially access examples

ÅLoosely run SMO on the new dataset S

ÅDelete some (currently) useless

examples from S

ï Finishing step

ÅRun full SMO on S

Fig. Source: http://leon.bottou.org/projects/lasvm

Libsvm with diff.
stop. criteria

28

Minimal Enclosing Ball Methods

ÁMinimal Enclosing Ball (MEB): the ball with the smallest radius that
encloses all the points in a given set

ÁFast iterative approximate solver available for MEB optimization

Dual form is a QP:

Fig. Source: Tsang et al., 2005.

29

Minimal Enclosing Ball Methods (cont.)

ÁCVM (Tsang et al., 2005): square-loss SVM can be casted into a MEB

problem

ÁThus SVM can be efficiently + approximately solved by using MEB solver

Á BVM (Tsang et al., 2007): faster version of CVM by further approximation

MEB dual:

Square-loss SVM dual:

kernel:

30

Empirical comparison: B/CVM vs Libsvm vs Lasvm

Fig. Source: Tsang et al., 2007.

31

Ramp Loss SVM

ÁSVM is less scalable on noisy data: hinge loss makes all the noisy

examples become SVs and computing with a lot of SVs slows down

algorithm convergence.

ÁReplacing hinge loss with ramp loss in the SVM optimization (Collobert et

al., 06)

2

1

1
min || || (, ())

2

N

t tt
C R y f

=
+ä

w
w x

* '(, ()) ()i i i ii
C y H y f=- Fäw x x

32

Ramp Loss SVM (cont.)

Á Solving the new optimization by ConCave Convex Procedure

Á Ramp loss SVM algorithm:

1. Initialization: train f(old) on a small subset of D

2. Calculate yif
(old)(xi) for all i in D

3. Train f(new)
 on a subset V, where V = {(xi,yi), any i, yif

(old)(xi) >-1}

4. Repeat step 2~3 until V is unchanged

Two Gaussians SVM solution Ramp loss SVM solution

33

Ramp Loss SVM (cont.)

ÁTraining a sequence of

small SVMs on clean

data is easier than

training a big SVM on

noisy data

ÁImprove scalability by

several times

ÁGenerate smaller

classifier

Fig. Source: Collobert et al., 2006.

34

SGD with kernel

ÁAlgorithm

1. Initialize w

2. Randomly select an example i in D

ÅDo

3. Repeat step 2 with enough iterations

ÁOk with <10,000 examples but not scalable for larger data due to the

curse of kernelization.

(1 ɖɚ) ɓ ()i i i« - + Fw w x
ɖ , if () 1

where ɓ
0, otherwise

i i i i

i

y y f <ë
=ì
í

x

Recall: w = Support Vectors (SVs) + their coefficients + kernel function

(1 ɖɚ) ɓ ()i i i« - + Fw w x
ɖ , if () 1

where ɓ
0, otherwise

i i i i

i

y y f <ë
=ì
í

x

35

Budgeted SGD

ÁBSGD Algorithm (Wang et al., 2012)

1. Initialize w, set B

2. Randomly select an example i in D

ÅDo

Å if (#SVs>B) then

3. Repeat step 2 with enough iterations

ÁBudget maintenance strategy: to reduce the size of SVs by one
ïRemoval
ïProject
ïMerging

(1 ɖɚ) ɓ ()i i i« - + Fw w x
ɖ , if () 1

where ɓ
0, otherwise

i i i i

i

y y f <ë
=ì
í

x

i« -Dw w

Recall: w = Support Vectors (SVs) + their coefficients + kernel function

36

Budgeted BSGD (cont.)

ÁTheorem (the impact of budget maintenance)

where , and comes from

ÁDesign philosophy:

ÁBudget maintenance optimization

ïRemoval:

ïProjection:

ïMerging:

* 1
2

ln()
() ()N

C N
Obj Obj C E

N
- ¢ +w w

min || ||E min || ||tD

minŬ ()p p
p

F x

1

,
minŬ () Ŭ ()

t

p p j j
p

j I p+

D
Í -

F - D Fä
Ŭ

x x

, , ,
min Ŭ () Ŭ () Ŭ ()

z
m m n n z

m n za
F + F - Fx x z

1

1
|| ||

N t

t
t

E
N h=

D
= ä t« -Dw w

tD

at each step

37

Budgeted Online Kernel Classifiers

ÁOnline learning with kernel

ïIteratively access example i in D and do

where and are calculated by w and (xi, yi)

ÁOnline learning with budget

ïIteratively access example i in D

ÅDo

Åif (#SVs>B) then

()i i ia b« + Fw w x

ia ib

()i i ia b« + Fw w x

i« -Dw w

38

Budgeted Online Kernel Classifier (cont.)

ÁRemoval-based budget maintenance strategies

ïRemove a random one (Cesa-Bianchi & Gentile,06; Vucetic et al., 09)

ïThe oldest SV (Dekel et al., 08)

ïThe smallest SV (Cheng et al., 07)

ïThe one that would be predicted with the largest confidence after its

removal (Crammer et al., 04);

ïThe one with the least validation error (Weston et al., 05; Wang and

Vucetic, 09)

()r ra« - Fw w x

39

Budgeted Online Kernel Classifier (cont.)

ÁProject-based budget maintenance strategies

ïBPA (Wang and Vucetic, 2010)

ïThe choise of I compromises between projection quality and

computation cost

ÅAll; the newest one; the newest one + its NN

ïClosed-form solution

() ()r r i i

i I

a a
Í

« - F + D Fäw w x x

2

,

1
min () || || (, ())

2

s.t. () ()

r

t t t
r

t r r i ii I

Q C H y f

ɓa
Í

= - + Ö

= - F + Fä

w
w w w x

w w x x

PA objective

the one will be removed
subset of the SV set

New constraint

40

Budgeted Online Kernel Classifier (cont.)

Refer to the survey section in ñBreaking the curse of kernelization: budgeted
stochastic gradient descnet for large-scale svm trainingò by Wang et al., 2012.

41

Linearization methods

ÁIdea: explicitly represent data in feature space and train a linear SVM

there

ÁExact methods:

ïPoly2SVM (Chang et al., 2010), Coffin (Sonnenburg et al., 2010)

ÁApproximate methods:

ïRandom Features (Rahimi and Recht, 2007), LLSVM (Zhang et al.,

2012)

Fig. Source: www.imtech.res.in.

42

Linearization methods (cont.)

ÁExact methods - Poly2SVM (Chang et al., 2010)

ïExplicitly compute degree-2 polynomial mapping

ïEfficient when mapped feature dimensionality is low (usually occur

when input features are sparse or low-dimensional)

ÁApproximate methods - Random features (Rahimi and Recht, 2007)

ïApproximate feature mapping of radial basis kernels by randomized

features.

when r=1, d=2

43

Linearization methods (cont.)

ÁLLSVM (Zhang et al., 12): cast nonlinear SVM into an equivalent linear

SVM through the decomposition of PSG kernel matrix

2

,

1
min

2

s.t. (()) 1

i

T

i i i

C

y

x
x

x

+

F ² -

ä
w

w

w x

, where is the rank of T

N N N B N B B³ ³ ³=K F F K

() ()T T

ij i j i j=F F =K x x F F

2

,

1
min

2

s.t. () 1

i

T

i i i

C

y

x
x

x

+

² -

ä
w

w

w F

r-dim virtual example

44

Linearization methods (cont.)

Á Approximate the optimal decomposition by Nyström method

Á LLSVM algorithm:

1. Select B landmarks points using sampling or k-means clustering

2. Compute eigen decomposition of KBB:

3. Train linear SVM on virtual examples, where

1 1/2 1/2=(U)(U)T T

N N N B B B N B N B N B

-

³ ³ ³ ³ ³ ³º L LK K K K K K

eigenvalue decomposition

1/2M U= L
1/2UN B N B³ ³= LF K

O(N) time complexity

B<<N

45

Linearization methods (cont.)

ÁHow B influences accuracy and training time?

