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Real-world predictive analytics problem-solving
workflow

Aln real world, many data analytics problems are often being solved by
formulating into data classification problem
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Big data

ACheap, pervasive and networked

computing devices are enhancing

our ability to collect data to an
even greater extent.

AWhat is big data?

ANo clear definition.

Data
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AA situation that exponentially grew complex data makes us
cannot easily make sense of it. To make sense of it, we need a
wide variety of technologies to tackle two difficulties: storage

and analysis.

AlLarge-scale classification is a highly demanding technique
which falls into the 2nd category.



T he

AT h e

éonsidered
large 10
years ago is
no longer
large by
current
Qtandard.
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Aldeal algorithm

AScalable
ANonlinear model;
ALow memory;
AHigh accuracy;

current st atus | S e
size of datasets have been
Datasets #train #test #dim #class | non-zero % | file size | domain
a9a 32,561 16,281 123 2 11.3% 2M social survey
jjenn 49,990 91,701 22 2 66.7% 7.5M time series
webspam 280,000 70,000 254 2 41.9% 327TM web text
rcvl_bin 677,399 20,242 47,236 2 0.2% 35M news text
url 1,976,130 | 420,000 | 3,231,961 | 2 0.004% 1.7G Internet data
mnist8m_bin | 8,000,000 | 10,000 784 2 19.3% 18G OCR images
mnist8m_mec | 8,000,000 | 10,000 784 10 19.3% 18G OCR images
AThe reality 1s far f
AFast training & prediction;
Nonlinearity No Yes
Training time fast slow
Prediction fast slow
) . Scalability high low
AEasy to implement; -
ATheoretically sound: Training space small large
Model size small large

gr
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Large-scale Linear Classification



Problem Setting

A Training examples:

D:{(xi,yi), i 4,..N,x R,y {, ]}
A Goal: train a linear classifier to separate D
sgn(f &))= sgn'x ), wherav IR

Note: we ignore bias term in f(x) for simplicity. Bias term can be implicitly
incorporated by adding a constant feature in the data



Perceptron

A Perceptron algorithm (Rosenblatt, 1957): o NS
Q \ |||. /j
a m\}gz‘f}
1. Initialize w ° /N
P a .-‘j i \
2. For each example iin D AN

sy, if y f(x)<0 7 1\
A Do W« W+a.)(i where a :‘ley' X (X') ; \
| {0, otherwise

3. Repeat step 2 until stopping criteria (e.g. enough iterations)

A Complexity: O(N) in time, O(M) in space”.  * sequentially load data by chunk

A Theory: converge after finite steps if data is linearly separable (Novikoff,
1962)



Perceptron (cont.)

APros:
I Both conceptually and computationally simple
I Constant memory consumption + online learning = scalable (to
arbitrary large data)

ACons:
I Falil to converge on non-linearly separable data
i Not sufficiently accurate
iOut of fashionté
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Linear Support Vector Machine

ATrain an optimal linear classifier by solving the optimization (Cortes et al.,

1995 :
) Unconstrained form:

o 1N
rrev|n§||w If +Na ma>( 1-y, T % ),9)
i=1

Constrained form:
min%”w”z +CH x

. sty W'x )2 1-x

A Note: in linear case, we can explicitly work on w rather than through SVs,
which makes our life much easier!!!

Fig. Source: http://www.ifp.illinois.edu/~yuhuang/sceneclassification.html
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Stochastic Gradient Descent for Linear SVM

, . . . 1N
A SVM optimization minObj(w)* gIIW i N a max 1y f X ).P
i=1

A Train SVM using gradient descent
1. Initialize w

0 W« W-huObJ(W)

W
3. Repeat step 3 until stopping criteria

2. D

A SGD: approximate the exact gradient using the one on the
instantaneous objective

W W-hk““sizj(w’b InsObjw, )* > iw [f +max 1y )3

A Theory: when i is i.i.d. sampled and #iterations is large, with high
probability, w converges to w* (Zhang, 2004; Shalev-Shwartz et al.,

2008)
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Stochastic Gradient Descent for Linear SVM (cont.)

A Train Linear SVM like Perceptron (Zhang, 04; Shalev-Shwartz et al., 08)

1. Initialize w
2. Randomly select an example iin D

_ehy, if yfx)<1
— |

A Do w« (1-/ + . where &,
«( wo+g {0, otherwise

3. Repeat step 2 with enough iterations

A O(N) training time, O(M) training space*

*: sequentially load data by chunk
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Dual Coordinate Descent for Linear SVM

ASVM optimization in dual form

moaxlTU-% U QUwhere ; =Ry ,",

W =YVa X

Amaximize the dual objective by iteratively optimizing one alpha (i.e.
coordinate) at a time and keeping the rest variables fixed

AWhich leads the update rule:  w« w+(a"™" - &%x

where a, has closed-form solution
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Dual Coordinate Descent for Linear SVM (cont.)

ATrain Linear SVM like Perceptron (Hsieh et al., 08)

1.Initialize w and &>, i =1,...N

2.For each example iin D

y, f(x)-1
1% If

new

ADo w« w+(a,
a_old « dew

é o ~
- &Y% where a™" = min%naxgeqf'd 0g
¢ ¢ -

3.Repeat step 2 until stopping criteria

AO(N) training time, O(N+M) training space
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Other popular approaches

ASecond-order stochastic gradient descent (Bordes et al., 2009)
ABundle approach (Teo et al., 2010)

ACutting plane approach (Joachims, 2006)

AMethods for L1-regularized SVM and logistic regression

ARef er to the survey papescaefim®ecent
classificationo by Yuan et al .,
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When data cannot fit into memory

ATraining time

= in-memory computation time + |/O time

APrevent unnecessary /O operation by
fully operating on in-memory data

AHow? Sequentially train data by chunk
(Yu et al., 2010)
I Not for every algorithm
I But good for SGD and DCD

53

Time (sec.)

Fig. Source: http://en.wikipedia.org/wiki/Virtual_memory and Yu et al., 2011.
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Off-the-shelf tools

ALiblinear (Fan et al., 2008)
I Linear SVM, logistic regression
I Powered by dual coordinate descent
I Windows/Linux cmd-line tool with interfaces to many languages
I Well maintained project
I Train few GB data in a matter of secs/mins

I Good for single machine usage when data CAN/CANNOT fit into
memory

18



Empirical comparison between linear and non-linear
classification

Data set #instances #features
Training  Testing
cod-RNA 59,535 271.617 8
jjcnni 49,990 91,701 22
covtype 464,810 116,202 54
webspam 280,000 70,000 254
MNIST38 11,982 1,984 752
real-sim 57.848 14,461 20.958
rcvi 20,242 677,399 47.236

astro-physic 49.896 12,473 99.757
yahoo-japan | 140,963  35.240 832.026

news20 15,997 3.999  1.355.191

Linear Nonlinear (kernel) Accuracy

Data set Time (s) Testing Time (s) Testing difference
Training  Testing | accuracy | Training Testing | accuracy | to nonlinear

cod-RNA 3.1 0.05 70.71 80.2 126.02 96.67 -25.96
jjcnnt 1.7 0.01 92.21 26.8 20.29 98.69 -6.48
covtype 1.5 0.03 76.37 | 46,695.8 1.131.20 96.11 -19.74
webspam 26.8 0.04 93.35 | 15.681.8 853.34 99.26 -5.91
MNIST38 0.2 0.01 96.82 38.1 5.61 99.70 -2.88
real-sim 0.3 0.01 97.44 938.3 81.94 97.82 -0.38
revi 0.1 0.43 96.26 108.0  3,259.46 96.50 -0.24
astro-physic 0.3 0.01 97.09 735.7 111.59 97.31 -0.22
yahoo-japan 33 0.03 92.63 | 20,955.2 1,890.83 93.31 -0.68
news20 1.2 0.03 96.95 383.2 100.38 96.90 0.05

Fig. Source: Yuan et al., 2012
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Why is linear classifier popular?

ABecause it is computationally cheap and deliver comparable accuracy to
non-linear classifiers in some applications:

i Carefully designed features already capture non-linear concepts, e.g.
computer vision applications

i In higher-dimensional feature spaces, data tends to be more linearly
separable, e.g. document classification (bag-of-words representation).

20



Where will the research of linear classification go?

AA field tend to be mature
I A lot of good algorithms for a wide variety of practical problems
I Many off-the-shelf tools

AFuture directions
I Transfer the mature technologies to other learning scenarios.

21
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Large-scale non-linear classification



When to use non-linear classifier?

AData has non-linear concepts

ASensitive to accuracy
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Kernel Support Vector Machine

AFeature mapping -

D={(x, Y. 1 %..N} u{> AT DB BN

Input Space Feature Space

ASVM optimization on D6 min = ||w If ﬁa max@ y f X ),C

=1

where f X Fw' Fx

APrimal to dual transformation => f(x) =& .Uy FX ~ ) (3, ykx W
/

Kernel trick
Note: w can only be implicitly represented by SVs + their coefficients
+ kernel function

Fig. Source: www.imtech.res.in.
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Decomposition Methods

A SVM dual form
mg;\xlTle-

N | =

U QUwhereQ, =yyk ( X
s.t."i, 0¢a, €

A Sequential Minimal Optimization (Platt, 98)
1. Smartly select a working example i and updatea, by solving
a - 1 9)
maxg{l- Q, U, B AQ ap st 0¢alx
4q, Q -
Closed-form solution for &,

2. Repeat step 1 until stopping criteria

25



Decomposition Methods (cont.)

ALibsvm (Chang and Lin, 01)

I Highly optimized implementation of SMO (plus heuristic for fast
convergence)

I Actively-maintained open source project
I Windows/Linux cmd-line tool and multiple language APIs
I exact SVM solver

iScal able for few hundr eds-di@&a@as (o

*: we define fiscalabled as training time ess than 10hrs
26



Decomposition Methods (cont.)

ALasvm (Bortes et al., 05): approximate SVM solver using online SMO
approximation
I Using less memory than Libsvm
I Less accurate
iScal able for few GBOs-difhdata*<10M e X

Training time variation vs. cache size
SEER = LASWM(x1)
o+ LibSwm

ALasvm algorlthm Libsvm with diff.

i Online step **1 stop. criteria . FE= R

o eps={#.03

ASequentially access examples
ALoosely run SMO on the new dataset S
ADelete some (currently) useless 2oon |
examples from S
I Finishing step |
ARun full SMO on S ol

200% |

l1e8% |

Fig. Source: http://leon.bottou.org/projects/lasvm i

27 16 512M 256H 128M G4M  I2M 16M 2 4 3M




Minimal Enclosing Ball Methods

AMinimal Enclosing Ball (MEB): the ball with the smallest radius that
encloses all the points in a given set

Dual form is a QP:

max a'diag(K) —a'Ka : 0<a, a'l=1

AFast iterative approximate solver available for MEB optimization

Fig. Source: Tsang et al., 2005.
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Minimal Enclosing Ball Methods (cont.)

ACVM (Tsang et al., 2005): square-loss SVM can be casted into a MEB
problem

MEB dual: maxa'diag(K) —-a'Ka : 0<a, a'l=1

—

Square-loss SVM dual: max—-a'Ka : 0<a, a'l=1

- i s
kernel A'(Z;‘- Zj-) = -yz--yjk(xi. XJ) - YilYj + %

AThus SVM can be efficiently + approximately solved by using MEB solver

A BVM (Tsang et al., 2007): faster version of CVM by further approximation

29



Empirical comparison: B/CVM vs Libsvm vs Lasvm

| =BV M(e=1e-3) ==BVM(e=1e-3)
#BVM(e=1e-4) . H=BVM(e=1e-4)
99t (> CVM(e=1e-3) =107 ECVM(e=1e-3)
S EFCVM(e=1e-4) 2 £FCVM(s=1e-4)
£ LIBSVM 8.0l LIBSVM
3 98.5r| 7 LASVM @ *_* - ;AS\TMSVM
] SimpleSVM = A imple
3 @ -4
@ gg E10 "
2 -
97 5¢ 10
[o] 107 : !
9%’03 164 1.05 10° N 10* ) 10°
. training set size _ {b} E'ili]glﬂ S'»:E_t size
(a) testing accuracy (in %). 1me.
—+-BVM(e=1e-3)
.| [HFBVM(e=1e-4)
109 CVM(e=1e-3)
@ £ CVM(e=1e-4) W
o LIBSVM
o [|¥LASWM S G
+ SimpleSVYM PR L
(=] -
%10'3_ N x g "
2 ¥
10°

Fig. Source: Tsang et al., 2007. 10° 10° 10°
training set size

(c) # support vectors.
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Ramp Loss SVM

ASVM is less scalable on noisy data: hinge loss makes all the noisy
examples become SVs and computing with a lot of SVs slows down

algorithm convergence.

we= €a yH(y f(x) &)

3 3
— i
o5 | Hinge loss | | o5 | F— Ramp loss | |
. 2 1 2
3 3
;",:' 15 5 15
T | | T
0.5 T 0.5
0 0
-2 -1 0 1 2 -2 -1 0 1 2

yi(x) yf(x)

AReplacing hinge loss with ramp loss in the SVM optimization (Collobert et

al., 06) ”JJ”% lw [f+C& Ry .f&))
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Ramp Loss SVM (cont.)

32

Solving the new optimization by ConCave Convex Procedure

3

‘ [— Ramp loss | |

2.5

Ramp loss SVM algorithm:

R(y.f(x)

2
1.5
1

0.5

0

Initialization: train f°d on a small subset of D -
Calculate y,f@d(x) for all i in D T e
Train f"W) on a subset V, where V = {(x,y,), any i, y,fCd(x) >-1}
Repeat step 2~3 until V is unchanged

e

Two Gaussians SVM solution Ramp loss SVM solution



ATraining a sequence of

y 12000 y
small SVMs on clean B SVVH, SVMH,
. . SVM R SVM R
data is easier than s s
training a big SVM on {7
noisy data
3000F
%
Almprove scalability by o so0of 3
several times = 5
4000F
AGenerate smaller .
classifier 20001
USPS+N Adult O UspPs+N Adult

Fig. Source: Collobert et al., 2006.
33



SGD with kernel

A Algorithm
1. Initialize w
2. Randomly select an example iin D

edyy, , yfxid
w« (1-d an) + where b, =}
A Do « (1-d aw+ B | :'o, otherwise

3. Repeat step 2 with enough iterations

Recall: w = Support Vectors (SVs) + their coefficients + kernel function

A Ok with <10,000 examples but not scalable for larger data due to the
curse of kernelization.
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Budgeted SGD

A BSGD Algorithm (Wang et al., 2012)
1. Initialize w, set B
2. Randomly select an example iin D

éqy ., yfxid
A Do w« (1-d aw) +. wherep. =7 ' !
° I-d )+ R | :'O, otherwise

A if #SVs>B) then W« w- [

3. Repeat step 2 with enough iterations
Recall: w = Support Vectors (SVs) + their coefficients + kernel function

A Budget maintenance strategy: to reduce the size of SVs by one
I Removal
I Project
I Merging

35



Budgeted BSGD (cont.)

ATheorem (the impact of budget maintenance)
Obi(w,)- Obi(w') ¢20 ) @
1

where E:Né‘illl%” ,and D, comes from w« w- [

t

ADesign philosophy: min||E | » min||D || ateach step

ABudget maintenance optimization

i Removal: minUF X,
P

i Projection: T[i)QUpF X, )a D &

Ji It+1 -p

I Merging: min LVJmF Xm +) n I:Fs{n (_z )Z:
m,n, za,

36



Budgeted Online Kernel Classifiers

AOnline learning with kernel
I Iteratively access exampleiinDanddo w« aw+ pKX)

where &, and b are calculated by w and (x;, y;)

AOnline learning with budget

I Iteratively access exampleiin D
ADo w« aw+ pRx)

Aif (#SVs>B) then w« w- [
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Budgeted Online Kernel Classifier (cont.)

ARemoval-based budget maintenance strategies
we w-a, Rx)

I Remove a random one (Cesa-Bianchi & Gentile,06; Vucetic et al., 09)
I The oldest SV (Dekel et al., 08)
I The smallest SV (Cheng et al., 07)

I The one that would be predicted with the largest confidence after its
removal (Crammer et al., 04);

I The one with the least validation error (Weston et al., 05; Wang and
Vucetic, 09)
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Budgeted Online Kernel Classifier (cont.)

AProject-based budget maintenance strategies

we w-a Kx) a @ 6f

the one will be removed g N
i BPA (Wang and Vucetic, 2010) subset of the SV set

PA objective minQ(wr):% w w, [f GHE,fK))

New constraint s.tw=w, a, &) a. 0 &

I The choise of | compromises between projection quality and
computation cost
AAIl; the newest one; the newest one + its NN
I Closed-form solution

39



Budgeted Online Kernel Classifier (cont.)

Algorithms Budget maintenance  Update time  Space
BPAnN projection O(B) O(B)
BSGD +removal  removal O(B) O(B)
BSGD + project  projection O(B?) O(B?)
BSGD + merge merging O(B) O(B)
Budget removal O(B) O(B)
Forgetron removal O(B) O(B)
Projectron++  projection O(B?) O(B?)
Random removal O(B) O(B)
SILK removal O(B) O(B)
Stoptron stop O(1) O(B)
Tighter removal O(B?) O(B)
Tightest removal O(B?) O(B)
TVM merging O(B?) O(B?)
Refer to the survey section I n ABreaki

stochastic gradient descnetforlarge-s cal e svm trainingo b
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Linearization methods

Aldea: explicitly represent data in feature space and train a linear SVM
there

o o
¢ ;
' ®
RNy
® o -
L AN
oo o R
® ) ®
Input Space Feature Space

AExact methods:
I Poly2SVM (Chang et al., 2010), Coffin (Sonnenburg et al., 2010)

AApproximate methods:
I Random Features (Rahimi and Recht, 2007), LLSVM (Zhang et al.,
2012)

Fig. Source: www.imtech.res.in.
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Linearization methods (cont.)

AExact methods - Poly2SVM (Chang et al., 2010)
I Explicitly compute degree-2 polynomial mapping
T

K(x;,xj) = (yx; x; + r)?  whenr=1, d=2

o(x) = [1,y/ 2721, ..., IV Tn, Y TE, . e N 2y 2a, . . ﬁq.-;z?n_1;1‘..n,]T

i Efficient when mapped feature dimensionality is low (usually occur
when input features are sparse or low-dimensional)

AApproximate methods - Random features (Rahimi and Recht, 2007)
I Approximate feature mapping of radial basis kernels by randomized
features.

!

k(xy) = (o(x),0(y)) = z(x)'zly)  z(x):R!— R
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Linearization methods (cont.)

ALLSVM (Zhang et al., 12): cast nonlinear SVM into an equivalent linear
SVM through the decomposition of PSG kernel matrix

Kwn =FndFn e WhereB is the rank &f

Ki = F\’Xi)T 6(1) Fi:TFj

1 .
min%”w”2 +Ca x rw’un§||w||2 tCa X

sty W'F )21 x sty W'F)? 1x
/

r-dim virtual example
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Linearization methods (cont.)

A Approximate the optimal decomposition by Nystrdom method

—1

% E B =

K N3 N © K N 3I_l>< E’:}&B:'« N BLJ \E/ZK N B/U' iiZ)T
eigenvalue decomposition

A LLSVM algorithm:

1. Select B landmarks points using sampling or k-means clustering
2. Compute eigen decomposition of Kgg: M =U L
3. Train linear SVM on virtual examples, where F,, =K | .,z U |1/2

O(N) time complexity
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Linearization methods (cont.)

AHow B influences accuracy and training time?
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