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About the tutorialist 

ÁWork for IBM Global Business Services and before for 

Siemens Research 

 

ÁResearch interests: Support Vector Machine, Large-scale 

learning, Online learning, Multiple-instance learning 

 

Á20 or so papers on JMLR, MLJ, ICML, KDD, AISTATS,é 
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Agenda 

ÁOverview 

ÁLarge-scale linear classification 

ÁLarge-scale non-linear classification 

ÁParallelism 

ÁSummary 
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Á In real world, many data analytics problems are often being solved by 

formulating into data classification problem 

Feature1 é Feature k Label 

Example 1 0.780 0.854 0.611 1.000 

Example 2 0.486 0.928 0.519 0.000 

é 0.677 0.467 0.064 1.000 

é 0.210 0.272 0.750   

é 0.799 0.100 0.579   

é 0.172 0.317 0.481   

é 0.966 0.551 0.344   

é 0.422 0.567 0.448   

é 0.100 0.407 0.300   

Example n 0.885 0.255 0.113 0.000 

Raw Data 
 

 

 

Feature Extraction 

 
 

 

 

 

 

 

Data 

Classification 
  

 

 

 

 

 

Evaluation 
  

 

 

 

 

 

Real-world predictive analytics problem-solving 
workflow 
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Big data 

ÁCheap, pervasive and networked 

computing devices are enhancing 

our ability to collect data to an 

even greater extent. 

 

 

 

 

 

Á What is big data? 
 
Á No clear definition.  
Á A situation that exponentially grew complex data makes us 
cannot easily make sense of it. To make sense of it, we need a 
wide variety of technologies to tackle two difficulties: storage 
and analysis.  
Á Large-scale classification is a highly demanding technique 
which falls into the 2nd category. 
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Á The size of datasets have been growingé 

 

 

 

 

 

 

 

 

considered 

large  10 

years ago is 

no longer 

large by 

current 

standard.  

Å The reality is far from the idealé 
Á Ideal algorithm 

Á Fast training & prediction; 

Á Scalable   

Á Nonlinear model;  

Á Low memory;  

Á High accuracy;  

Á Easy to implement;  

Á Theoretically sound; 

Linear SVM Kernel SVM 

Nonlinearity No Yes 

Training time fast slow 

Prediction  fast slow 

Scalability high low 

Training space small large 

Model size small large 

The current status is é 
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Large-scale Linear Classification 
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Problem Setting 

Á Training examples: 

 

 

ÁGoal: train a linear classifier to separate D 

 

 

 

 

{ }( , ),  1,..., ,  ,  {1, 1}M

i i i iD y i N R y= = Í Í -x x

sgn( ( )) sgn( ),  where T Mf R= Íx w x w

Note: we ignore bias term in f(x) for simplicity. Bias term can be implicitly 
incorporated by adding a constant feature in the data   
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Perceptron 

ÁPerceptron algorithm (Rosenblatt, 1957): 

 

1. Initialize w  

2. For each example i in D 

 

ÅDo                          where                 

 

3. Repeat step 2 until stopping criteria (e.g. enough iterations) 

 

ÁComplexity: O(N) in time, O(M) in space*. 

Á Theory: converge after finite steps if data is linearly separable (Novikoff, 

1962) 

 

 

i ia« +w w x
,    if  ( ) 0

0,     otherwise

i i i

i

y y f
a

<ë
=ì
í

x

*: sequentially load data by chunk  
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Perceptron (cont.) 

ÁPros: 

ïBoth conceptually and computationally simple 

ïConstant memory consumption + online learning = scalable (to 

arbitrary large data) 

 

ÁCons: 

ïFail to converge on non-linearly separable data 

ïNot sufficiently accurate 

ïOut of fashioné  
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Linear Support Vector Machine 

ÁTrain an optimal linear classifier by solving the optimization (Cortes et al., 

1995) 

 

 

 

 

 

 

 

Á Note: in linear case, we can explicitly work on w rather than through SVs, 

which makes our life much easier!!!  

 

( )2

1

ɚ 1
min || || max 1 ( ),0
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i i

i

y f
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+ -ä
w

w x

Fig. Source: http://www.ifp.illinois.edu/~yuhuang/sceneclassification.html 
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Constrained form: 

Unconstrained form: 
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Stochastic Gradient Descent for Linear SVM 

Á SVM optimization  

Á Train SVM using gradient descent 
1. Initialize w 

 
2. Do  

 
3. Repeat step 3 until stopping criteria 

Á SGD: approximate the exact gradient using the one on the 
instantaneous objective 

 

 

Á Theory: when i is i.i.d. sampled and #iterations is large, with high 
probability, w converges to w* (Zhang, 2004; Shalev-Shwartz et al., 
2008) 

 

( )Obj
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Stochastic Gradient Descent for Linear SVM (cont.) 

Á Train Linear SVM like Perceptron (Zhang, 04; Shalev-Shwartz et al., 08) 

 

1. Initialize w  

2. Randomly select an example i in D 

 

ÅDo                                           where 

 

3. Repeat step 2 with enough iterations 

 

ÁO(N) training time, O(M) training space* 

 

(1 ) i ilh a« - +w w x
,    if  ( ) 1

0,         otherwise

i i i

i

y y fh
a

<ë
=ì
í

x

*: sequentially load data by chunk  
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Dual Coordinate Descent for Linear SVM  

ÁSVM optimization in dual form 

 

 

 

Ámaximize the dual objective by iteratively optimizing one alpha (i.e. 

coordinate) at a time and keeping the rest variables fixed 

 

ÁWhich leads the update rule: 

where       has closed-form solution 

 

 

1
max ,   where 

2

T T T

ij i i i jy y- =
Ŭ

1 Ŭ Ŭ QŬ  Q x x

* *

i i iya=w x

( )new old

i i ia a« + -w w x

ia
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Dual Coordinate Descent for Linear SVM (cont.) 

ÁTrain Linear SVM like Perceptron (Hsieh et al., 08) 

 

1.Initialize w and  

2.For each example i in D 

 

ÅDo                                      where 

 

 

 

3.Repeat step 2 until stopping criteria 

 

 

ÁO(N) training time, O(N+M) training space 

 

 

( new old
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Other popular approaches 

ÁSecond-order stochastic gradient descent (Bordes et al., 2009) 

ÁBundle approach (Teo et al., 2010) 

ÁCutting plane approach (Joachims, 2006) 

ÁMethods for L1-regularized SVM and logistic regression  

ÁRefer to the survey paper ñRecent advance on large-scale linear 

classificationò by Yuan et al.,  
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When data cannot fit into memory 

ÁTraining time  

= in-memory computation time + I/O time   

 

ÁPrevent unnecessary I/O operation by 

fully operating on in-memory data 

 

ÁHow? Sequentially train data by chunk 

(Yu et al., 2010) 

ïNot for every algorithm 

ïBut good for SGD and DCD  

Fig. Source: http://en.wikipedia.org/wiki/Virtual_memory and Yu et al., 2011. 

dataset 
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Off-the-shelf tools 

ÁLiblinear (Fan et al., 2008) 

ïLinear SVM, logistic regression  

ïPowered by dual coordinate descent 

ïWindows/Linux cmd-line tool with interfaces to many languages 

ïWell maintained project 

ïTrain few GB data in a matter of secs/mins  

 

ïGood for single machine usage when data CAN/CANNOT fit into 

memory   
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Empirical comparison between linear and non-linear 
classification 

Fig. Source: Yuan et al., 2012 



20 

Why is linear classifier popular?   
 

ÁBecause it is computationally cheap and deliver comparable accuracy to 

non-linear classifiers in some applications: 

 

ïCarefully designed features already capture non-linear concepts, e.g. 

computer vision applications 

 

ïIn higher-dimensional feature spaces, data tends to be more linearly 

separable, e.g. document classification (bag-of-words representation). 
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Where will the research of linear classification go? 

ÁA field tend to be mature  

ïA lot of good algorithms for a wide variety of practical problems 

ïMany off-the-shelf tools 

 

ÁFuture directions 

ïTransfer the mature technologies to other learning scenarios. 

 



22 

Large-scale non-linear classification 
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When to use non-linear classifier? 

ÁData has non-linear concepts 

ÁSensitive to accuracy 
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Kernel Support Vector Machine 

ÁFeature mapping 

 

 

 

ÁSVM optimization on Dô: 

 

 

ÁPrimal to dual transformation => 

2

1

ɚ 1
min || || max(1 ( ),0)

2

N

i i

i

y f
N =

= + -ä
w

w x

' {( ( ), ), 1,..., }i iD y i N= F =x

( ) Ŭ ( ) ( ) Ŭ ( , )T

i i i i i ii i
f y y k= F F =ä äx x x x x

Kernel trick 

Twhere    ( ) ( )f = Fx w x

Note: w can only be implicitly represented by SVs + their coefficients  
+ kernel function 

Fig. Source: www.imtech.res.in. 

{( , ), 1,..., }i iD y i N= =x
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Decomposition Methods 

ÁSVM dual form 

 

 

 
ÁSequential Minimal Optimization (Platt, 98) 

 
1.  Smartly select a working example i and update     by solving 

 
 
 
 
 

2.  Repeat step 1 until stopping criteria  
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Decomposition Methods (cont.) 

ÁLibsvm (Chang and Lin, 01) 

 

ïHighly optimized implementation of SMO (plus heuristic for fast 

convergence) 

 

ïActively-maintained open source project  

 

ïWindows/Linux cmd-line tool and multiple language APIs 

 

ïexact SVM solver 

 

ïScalable for few hundreds MBôs (or <1M examplesô) low-dim data * 

 

 

 

 

 

 

 

*: we define ñscalableò as training time less than 10hrs.   
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Decomposition Methods (cont.) 

ÁLasvm (Bortes et al., 05): approximate SVM solver using online SMO 

approximation 

ïUsing less memory than Libsvm 

ïLess accurate  

ïScalable for few GBôs (or <10M examplesô) low-dim data * 

 

ÁLasvm algorithm 

ï Online step 

ÅSequentially access examples 

ÅLoosely run SMO on the new dataset S 

ÅDelete some (currently) useless  

examples from S 

ï Finishing step 

ÅRun full SMO on S 

 

 

Fig. Source: http://leon.bottou.org/projects/lasvm 

Libsvm with diff. 
stop. criteria 
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Minimal Enclosing Ball Methods 

ÁMinimal Enclosing Ball (MEB): the ball with the smallest radius that 
encloses all the points in a given set 

 

 

 

 

 

 

 

 

ÁFast iterative approximate solver available for MEB optimization  

 

Dual form is a QP: 

Fig. Source: Tsang et al., 2005. 
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Minimal Enclosing Ball Methods (cont.) 

ÁCVM (Tsang et al., 2005): square-loss SVM can be casted into a MEB 

problem  

 

 

 

 

 

ÁThus SVM can be efficiently + approximately solved by using MEB solver 

 

Á BVM (Tsang et al., 2007): faster version of CVM by further approximation 

 

MEB dual: 

Square-loss SVM dual: 

kernel: 
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Empirical comparison: B/CVM vs Libsvm vs Lasvm 

Fig. Source: Tsang et al., 2007. 
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Ramp Loss SVM 

ÁSVM is less scalable on noisy data: hinge loss makes all the noisy 

examples become SVs and computing with a lot of SVs slows down 

algorithm convergence.  

 

 

 

 

 

 

ÁReplacing hinge loss with ramp loss in the SVM optimization (Collobert et 

al., 06) 

 

2
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Ramp Loss SVM (cont.) 

Á Solving the new optimization by ConCave Convex Procedure  

Á Ramp loss SVM algorithm: 

 

1. Initialization: train f(old) on a small subset of D 

2. Calculate yif
(old)(xi) for all i in D 

3. Train f(new)
 on a subset V, where V = {(xi,yi), any i, yif

(old)(xi) >-1} 

4. Repeat step 2~3 until V is unchanged 

 

 

 

 

Two Gaussians SVM solution Ramp loss SVM solution 
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Ramp Loss SVM (cont.) 

ÁTraining a sequence of 

small SVMs on clean 

data is easier than 

training a big SVM on 

noisy data 

 

ÁImprove scalability by 

several times 

 

ÁGenerate smaller 

classifier 

Fig. Source: Collobert et al., 2006. 
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SGD with kernel 

ÁAlgorithm  

1. Initialize w  

2. Randomly select an example i in D 

 

ÅDo 

 

3. Repeat step 2 with enough iterations 

 

 

 

ÁOk with <10,000 examples but not scalable for larger data due to the 

curse of kernelization. 

 

(1 ɖɚ) ɓ ( )i i i« - + Fw w x
ɖ ,   if  ( ) 1

where  ɓ
0,         otherwise

i i i i

i

y y f <ë
=ì
í

x

Recall: w =  Support Vectors (SVs) + their coefficients + kernel function 

(1 ɖɚ) ɓ ( )i i i« - + Fw w x
ɖ ,   if  ( ) 1

where  ɓ
0,         otherwise

i i i i

i

y y f <ë
=ì
í

x
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Budgeted SGD 

ÁBSGD Algorithm (Wang et al., 2012)  

1. Initialize w, set B 

2. Randomly select an example i in D 

 

ÅDo 

 

 

Å if  (#SVs>B)   then 

 

3. Repeat step 2 with enough iterations 

 

 
ÁBudget maintenance strategy: to reduce the size of SVs by one 
ïRemoval 
ïProject 
ïMerging  

 

 

(1 ɖɚ) ɓ ( )i i i« - + Fw w x
ɖ ,   if  ( ) 1

where  ɓ
0,         otherwise

i i i i

i

y y f <ë
=ì
í

x

i« -Dw w

Recall: w =  Support Vectors (SVs) + their coefficients + kernel function 
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Budgeted BSGD (cont.) 

ÁTheorem (the impact of budget maintenance)  

 

where                                , and      comes from 

 

ÁDesign philosophy: 

 

ÁBudget maintenance optimization  

 
ïRemoval: 

 
ïProjection: 

 
ïMerging: 

* 1
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at each step 



37 

Budgeted Online Kernel Classifiers 

ÁOnline learning with kernel 

 

ïIteratively access example i in D and do 

 

where        and        are calculated by w and (xi, yi) 

 

 

ÁOnline learning with budget  

 

ïIteratively access example i in D  

ÅDo 

 

Åif  (#SVs>B)   then 

 

 

( )i i ia b« + Fw w x

ia ib

( )i i ia b« + Fw w x

i« -Dw w
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Budgeted Online Kernel Classifier (cont.) 

ÁRemoval-based budget maintenance strategies 

 

ïRemove a random one (Cesa-Bianchi & Gentile,06; Vucetic et al., 09)  

 

ïThe oldest SV (Dekel et al., 08) 

 

ïThe smallest SV (Cheng et al., 07) 

 

ïThe one that would be predicted with the largest confidence after its 

removal (Crammer et al., 04); 

 

ïThe one with the least validation error (Weston et al., 05; Wang and 

Vucetic, 09)  

 

( )r ra« - Fw w x



39 

Budgeted Online Kernel Classifier (cont.) 

ÁProject-based budget maintenance strategies  

 

 

ïBPA (Wang and Vucetic, 2010)   

 

 

 

 

 

 

ïThe choise of I compromises between projection quality and 

computation cost 

ÅAll; the newest one; the newest one + its NN 

ïClosed-form solution  
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PA objective 

the one will be removed 
subset of the SV set 

New constraint 
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Budgeted Online Kernel Classifier (cont.) 

Refer to the survey section in ñBreaking the curse of kernelization: budgeted 
stochastic gradient descnet for large-scale svm trainingò by Wang et al., 2012. 
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Linearization methods  

ÁIdea: explicitly represent data in feature space and train a linear SVM 

there 

 

 

 

 

ÁExact methods: 

ïPoly2SVM (Chang et al., 2010), Coffin (Sonnenburg et al., 2010) 

 

ÁApproximate methods: 

ïRandom Features (Rahimi and Recht, 2007), LLSVM (Zhang et al., 

2012) 

Fig. Source: www.imtech.res.in. 
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Linearization methods (cont.) 

ÁExact methods - Poly2SVM (Chang et al., 2010) 

ïExplicitly compute degree-2 polynomial mapping  

 

 

 

 

 

ïEfficient when mapped feature dimensionality is low (usually occur 

when input features are sparse or low-dimensional) 

 

ÁApproximate methods - Random features (Rahimi and Recht, 2007) 

ïApproximate feature mapping of radial basis kernels by randomized 

features. 

 

when r=1, d=2 
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Linearization methods (cont.) 

ÁLLSVM (Zhang et al., 12): cast nonlinear SVM into an equivalent linear 

SVM through the decomposition of PSG kernel matrix  
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Linearization methods (cont.) 

Á Approximate the optimal decomposition by Nyström method 

 

 

 

 

 

Á LLSVM algorithm: 

 

1. Select B landmarks points using sampling or k-means clustering 

2. Compute eigen decomposition of KBB: 

3. Train linear SVM on virtual examples, where  

 

 

1 1/2 1/2=( U )( U )T T

N N N B B B N B N B N B

-

³ ³ ³ ³ ³ ³º L LK K K K K K

eigenvalue decomposition 

1/2M U= L
1/2UN B N B³ ³= LF K

O(N) time complexity 

B<<N 



45 

Linearization methods (cont.) 

ÁHow B influences accuracy and training time?  


