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 Basics of Bayesian networks (30 minutes)
• Scoring functions (30 minutes)
• Dynamic programming (30 minutes)
• Admissible heuristic search (45 minutes)
• Integer linear programming (60 minutes)
• Empirical evaluations (15 minutes)

Outline
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• Many research problems involve understanding the 
uncertain relations between a set of random variables

– Ignorance: Limited knowledge
– Laziness: Details ignored

• Idea: Using a joint probability distribution to capture the 
relations

?

?

Understanding uncertain relations
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Basic probability theory

• Probability theory has to do with experiments that have a set of 
distinct outcomes/values

– E.g. toss a coin with outcome being head or tail

• A random variable is a function on an outcome space: it assigns a 
unique value to each outcome in the domain

– Weather: sunny, rainy, cloudy, snowy

• In the case of a finite domain, every subset of the outcome space is 
called an event

– e.g., Weather = (sunny  rainy)

• A discrete random variable has an associated probability 
distribution

– P(Weather) = <sunny: 0.72, rainy: 0.1, cloudy: 0.08,snowy: 0.1>
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Some probability concepts

• Prior or unconditional probabilities of events
e.g., P(Earthquake = true) = 0.1, P(Weather = sunny) = 0.72

• Joint probability distribution (multivariate distribution) for a set of 
random variables gives the probability of every atomic event on 
those random variables

P(Weather, Alarm) = a 4 × 2 matrix of values:

Weather = sunny rainy cloudy snowy 
Earthquake = true 0.072 0.01 0.008 0.01
Earthquake = false 0.648 0.09 0.072 0.09

• Conditional or posterior probabilities
P(Earthquake | Alarm):

Alarm = yes no
Earthquake = true 0.22 0.03
Earthquake = false 0.78 0.97
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Some probability rules

• Conditional probability rule:
P(a | b) = P(a  b) / P(b) if  P(b) > 0

• Product rule (chain rule):
P(a  b) = P(a | b) P(b) = P(b | a) P(a)
P(a  b  c) = P(a | b,c) P(b|c) P(c)

• Total probability rule: For any event φ, sum the atomic events where 
φ is true:  P(φ) = Σω:ω╞φP(ω)

P(X=x) = Σ_Y P(X=x, Y)

• Bayes rule:
P(a | b) = P(b | a) P(a) / P(b)
P(Cause|Effect) = P(Effect|Cause) P(Cause) / P(Effect)
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Graphical representation of probability distribution

Representation: a joint probability distribution P(B, E, R, A, N) over 
five binary variables

),,,|(),,|(),|()|()(),,,,( AREBNPREBAPEBRPBEPBPNAREBP 

• How many free parameters (probabilities) 
are needed? 

– 5-dimensional table: 31
– Graphical representation: 31
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Independence

• A and B are independent iff
P(A|B) = P(A)    or P(B|A) = P(B)     or P(A, B) = P(A) P(B)

P(Earthquake, Burglary, Alarm, Weather)
= P(Earthquake, Burglary, Alarm) P(Weather)

• 31 free parameters reduced to 10 

Earthquake

Burglary Alarm

Weather

Earthquake

Burglary Alarm

Weather
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Conditional independence

• If there is an earthquake, the probability that alarm sounds doesn't 
depend on radio announcement

• Alarm is conditionally independent of RadioAnnounce given 
Earthquake

P(Alarm | RadioAnnounce , Earthquake) = P(Alarm | Earthquake) or
P(Alarm, RadioAnnounce | Earthquake) = P(Alarm | Earthquake) P(RadioAnnounce | 

Earthquake)

• Conditional independence relations are more prevalent
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Graphical representation of probability distribution

Representation: a joint probability distribution over five binary 
variables

( , , , , )P Burglary Eearthquak RadioAnnounce Alarm NeighborCall

given the following conditional independence relations:

ܧܤ
R 	N,A,B | E
N B,E,R | A

simplifies

ܲ ,ܤ ,ܧ ܴ, ,ܣ ܰ =P(B)P(E)P(A|B,E)P(N|A)P(R|E)
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Bayesian networks

• A Bayesian Network is a graph in which:
– A set of random variables makes up the nodes in the network.
– A set of directed links or arrows connects pairs of nodes.
– Each node has a conditional probability table that quantifies the effects the 

parents have on the node.
– Directed acyclic graph (DAG), i.e. no directed cycles.

P(B) P(E)

P(N|A)

P(R|E)
P(A|B,E)
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Independences in BNs

• Three basic independence structures as building 
blocks:
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Independences in BNs

• Indirect cause: Burglary is independent of NeighborCall given 
Alarm

– P(N|A, B) = P(N|A)
– P(N, B|A) = P(N|A)P(B|A)
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Independences in BNs

• Common effect: 
– Burglary is independent of Earthquake when Alarm is not known
– Burglary and Earthquake become dependent given Alarm!!!
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Independences in BNs

• Common cause: Alarm is independent of RadioAnnounce given 
Earthquake

– P(A|E, R) = P(A|E)
– P(A, R|E) = P(A|E)P(R|E)



1-17

Markov assumption

• Each variable is independent on its non-descendants, given its 
parents in Bayesian networks

• N ┴ B, E, R | A
• R ┴ B, A, N | E
• …
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Chain rule





n

i
iin XPaXPXXXP

1
21 ))(|(),...,,(
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Inference tasks (1)

• Belief updating: computing the posterior probabilities of an 
unobserved variable given  observed variables

( | , )P Burglary RadioAnnounce true NeighborCall true 
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Inference tasks (2)

• Most probable explanation (MPE) queries: compute the most likely 
joint state of all unobserved variables

• Maximum A Posteriori Assignment (MAP) queries: compute the 
most likely joint state of some unobserved variables

, ,
arg max ( , , | , )

Burglary Earthquake Alarm
P Burglary Earthquake Alarm RadioAnnounce true NeighborCall true 

, ,
arg max ( , | , )

Burglary Earthquake Alarm
P Burglary Earthquake RadioAnnounce true NeighborCall true 
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Inference tasks (3)

• Most Relevant Explanation (MRE) queries: compute the most 
relevant partial explanation for the observed evidence

),|,(maxarg
,

truellNeighborCatruenceRadioAnnouEarthquakeBurglaryGBF
EarthquakeBurglary



[Yuan, Lim, Lu, JAIR-11]
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Efficient algorithms for inference 
and learning computation by 
exploring the graph structure

Suppose we want to compute P(R)?

)|()( )|(),|()(

),,,,()(

BRPBP ANPEBAPEP

NAREBPRP

B E A N

E B A N







   



)|(),|()|()()( ANPEBAPBRPEPBP
E B A N


)|()( BRPBP
B



Efficient computation

#sum=15

#sum=1, #prod=2
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Advantages of Bayesian networks

• Provide intuitive and compact graphical representations of the 
uncertain relations between the random variables

• Provide well-understood principles for 
– Incorporating prior knowledge with observational data
– Handing missing data
– Knowledge discovery from data 

• Able to solve both prediction and explanation tasks
(Unlike many other machine learning methods that are mainly predictive 

methods)
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• Robotics 
• Bioinformatics
• Security
• User modeling
• Vision
• Data mining
• Medical and machine 

diagnosis/prognosis

• Information retrieval
• Planning 
• Natural language 

interpretation
• Fraud detection
• Planning 
• …

Applications of Bayesian networks
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Learning Bayesian networks

• Very often we have data sets
• We can learn Bayesian networks from these data

data

structure

numerical 
parameters
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Goals of structure learning

• Knowledge discovery
– learn the dependency structure relating variables

• Density estimation 
– estimate a statistical model of the underlying distribution
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Major learning approaches

• Constraint-based structure learning
– Find a network that best explains the dependencies and 

independencies in the data

• Score-based structure learning
– Find the highest-scoring network structure

• Hybrid approaches
– Integrate constraint- and/or score-based structure learning

• Bayesian model averaging
– Average the prediction of all possible structures
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Score-based learning

• Find a Bayesian network that optimizes a given scoring function

• Two major research issues evident from above
– How to define a scoring function?
– How to formulate the optimization problem?
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Contents of this tutorial

• Exact algorithms for score-based structure learning
– Scoring functions
– Dynamic programming
– Admissible heuristic search
– Integer linear programming
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• Basics of Bayesian networks (30 minutes)
 Scoring functions (30 minutes)
• Dynamic programming (30 minutes)
• Admissible heuristic search (45 minutes)
• Integer linear programming (60 minutes)
• Empirical evaluations (15 minutes)

Outline
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Scoring Functions

• Bayesian Dirichlet Family (BD)

• Minimum Description Length (MDL)

• Factorized Normalized Maximum Likelihood (fNML)

• Score Pruning

• Practicalities
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Assumptions (Generally)

1. Multinomial sample. 
2. Complete data. Datasets are complete.
3. Parameter independence.

– Global. Parameters of each variable are independent.
– Local. Parent parameters of a variable are independent.

4. Parameter modularity. Parents determine 
parameters.

5. Dirichlet*. Parameter densities are Dirichlet. 
6. Structure possibility**. All complete structures are 

possible.
7. Likelihood equivalence***. Score of equivalent 

networks are equal.
[Heckerman 1995]
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Bayesian Dirichlet (BD) Scores

Suppose we’d like to find the most likely joint probability 
of structure and data given prior knowledge.

The probability of a particular structure is

We have two components:
• Evaluation of the structure
• Evaluation of the data given the structure

In general, ξ is given as Dirichlet hyperparameters, α.
[Heckerman 1995]
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BD, Evaluation of                 

First, calculate the probability of each sample

Based on the Dirichlet distribution, write this as

We can then write the likelihood by multiplying the 
probability of all samples together as

[Heckerman 1995]
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Score Probability,                

Recall, by chain rule, we have

From the previous derivation, we can rewrite this as

By combining like terms, we can simplify this as

This is the BD scoring function.
If we say that αijk = 1, then we have the K2 metric.

[Heckerman 1995, Cooper and Herskovits 1992]
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Some Equivalences

If G1 and G2 are Markov equivalent…

• Prior probabilities and equivalence

• Likelihood probabilities and equivalence

• Score probabilities and equivalence

[Heckerman 1995]
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The BDe and BDeu Scoring Functions

The BD metric does not guarantee likelihood 
equivalence.

We can restrict the hyperparameters to ensure 
likelihood equivalence and derive the BDe metric.

We can also use uninformative hyperparameters.  This 
gives the BDeu metric.

[Heckerman 1995]
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Prior Structures,            

Many methods can  be used to specify prior 
probabilities over structures.

Heckerman et al., propose solicitation of a prior 
structure from experts and the following function.

Suppose G and the prior structure differ by δ arcs.

This does not satisfy prior equivalence in general.
A uniform prior is often assumed.

[Heckerman 1995]
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The BDeu Scoring Function

Putting everything together...

If we assume uniform priors and log space...
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Limitations of BDeu

• (And all other methods) Parameter independence is 
violated when data is missing.

• (And all other methods) Experimental data is 
different than observational data.

• Problem: How do I specify priors over structures?

• Problem: How do I specify α?
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Minimum Description Length (MDL)

MDL views learning as data compression.

Traditionally, MDL consists of two components:
• Model encoding
• Data encoding, using the model

A few properties:
• Formalizes Occam’s Razor
• Works regardless of ‘true’ model

Note: In the BN literature, “MDL” refers to the two-part version of MDL.
[Rissanen 1978, Grunwald 2005]
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Simple MDL Example

Short model encoding
Long data encoding

Long model encoding
Short data encoding

Medium model encoding
Medium data encoding

[Grunwald 2005]
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Encoding Bayesian Network Models

We must encode:
• Parents of each node

We need logሺnሻ	bits per parent.

• Parameters of conditional probability distributions*
We need qi parameters for xi.

We need to use         bits per parameters to satisfy certain minimax 
criteria.

The total complexity is                                           .

Other choices for encodings are possible.
* Assuming we use conditional probability tables [Lam and Bacchus 1994, Suzuki 1993]
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Encoding Data Given a Bayesian Network Model, 1

Each instantiation i is assigned a unique binary string 
(codeword), with length 

So the length to encode the entire dataset is

Problems:
• Unknown probabilities pi	
• Exponentially many unique instantiations

Observations: 
• Cross-entropy gives an upper bound on length. 
• The BN factorizes. [Lam and Bacchus 1994]
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Encoding Data Given a Bayesian Network Model, 2

Solution: Approximate cross-entropy using the 
sufficient statistics from the data.

The length to encode the data for Xi with the model is

[Lam and Bacchus 1994]
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MDL as a Scoring Function for Bayesian Networks

As derived here, the entire MDL score for a network is:

Another commonly used form does not include the 
cost to record the parents and is written as:

Problem: which network encoding is ”best?”
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Normalized Maximum Likelihood (NML)

Like MDL, we still view learning as compression.

NML searches for a universal code:
• Performs well on the data we have
• Also performs well on all other datasets (regret)

Formally, 

or

Model parameters are maximized for each D’.
We no longer have to specify an encoding.

Maximum likelihood
Normalized over all datasets

[Grunwald 2005]
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NML for One-variable Multinomial Sample

Given:                                      , where each xi is a sample 
from a single, discrete random variable with K values.

Then the NML distribution for that dataset is

Where C(K, N) is the regret term and the sum is over all 
datasets of size N.

C(K, N) can be computed in linear time. [Kontkanen 2007]
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NML for Bayesian Networks

For a particular structure, M: 

Problem: We have not real hope of calculating regret.

Solution: Approximate it with a factorized set of 
multinomial samples.

[Silander et al. 2008]

For each variable

For each parent instantiation

The regret of those records
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Factorized NML for Bayesian Networks

The factorized NML score for Bayesian networks is

Note that we do not pick the encoding or any other 
parameters.

We also did not pick hyperparameters.
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Consider all of the scoring functions we discussed.

All of these are expressed as a sum over the individual 
variables.

This property is called decomposability and will be 
quite important for structure learning.

BDeu

MDL

fNML

Decomposability

[Heckerman 1995, etc.]
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Score Pruning

Observation: All of the scoring functions we have 
discussed are decomposable, of the form

Theorem: Say PAi ⊂ PA’i and ScoreሺXi|PAiሻ	൐	ScoreሺX|PA’iሻ.  
Then PA’i is not optimal for Xi.

Proof Sketch: Consider structures which differ only by 
PAi and PA’i.  We could just use PAi and not add cycles.

Problem: We still need ScoreሺXi|PAiሻ and ScoreሺX|PA’iሻ.
[Teyssier and Koller 2005]
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Exponential Score Pruning, MDL

The difference between local MDL scores for parents 
PA and PA’ for Xi can be expressed as

Theorem: Say PAi ⊂ PA’i and the (second) difference is 
negative.  Then neither PA’i nor any of its supersets 
are not optimal for Xi.

Proof intuition: LL is always non-positive and K is 
monotonically increasing.  So the penalty must 
increase more than the LL can decrease.

[de Campos and Ji 2011, Tian 2000]
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Exponential Score Pruning, BDeu

We can write BDeu as…

Note that                looks like

-2

-1.5

-1

-0.5

0

0.5

0 1 2 3 4

[de Campos and Ji 2011]
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Exponential Score Pruning, BDeu

Observations: We can bound both f and g based on the 
behavior of –log	Γ.

Theorem: Say PAi ⊂ PA’i and           .          for every j, and
. Then neither PA’i nor any of its 

supersets are not optimal for Xi.

Proof intuition: Alphas can never increase, and the g
term (analogous to LL) can only improve so much.

[de Campos and Ji 2011]
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Empirical Results of Score Pruning

[de Campos and Ji 2011]
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Practicalities

Empirically, the sparse AD-tree data structure is the 
best approach for collecting sufficient statistics.

A breadth-first score calculation strategy maximizes 
the impact of exponential pruning.

Caching significantly reduces runtime.

Local score calculations are easily parallelizable.
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Other Notes

• MDL is numerically the same as the Bayesian 
Information Criterion (BIC).

• There are many other decomposable scoring 
functions that we did not cover.

– Akaike’s Information Criterion (AIC), which is similar to BIC
– K2, which is a form of BD
– MIT, which is a type of penalized KL-divergence score



2-30

Scoring Function Wrap-up

• There are many scoring functions available for 
judging the fitness of a Bayesian network given data.

– Each makes different assumptions about what optimality means.
– Others include AIC, MIT, and others.

• Many scoring functions are decomposable.  This will 
be important later.

• Exponential score pruning can significantly reduce 
the number of necessary score calculations.  In 
practice, this drastically reduces learning times.
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• Basics of Bayesian networks (30 minutes)
• Scoring functions (30 minutes)
 Dynamic programming (30 minutes)
• Admissible heuristic search (45 minutes)
• Integer linear programming (60 minutes)
• Empirical evaluations (15 minutes)

Outline
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Exploiting Scoring Function Decomposability

Observation: All BNs are DAGs, and all DAGs have a 
topological order.

Recall decomposabile scoring functions.

The score of each variable depends on its parents, but 
not the relationships among the parents.

Given an ordering, we know the candidate parents for 
each variable.
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Dynamic Programming Decomposition

Begin with a 
single variable.

Pick one variable
as leaf. Find its
optimal parents.

Pick another leaf.
Find its optimal 
parents from current.

Continue picking leaves
and finding optimal parents.

[Silander and Myllymaki 2006]
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Dynamic Programming for BNSL

Goal: Given a scoring function Score, we want to find

Observation: All BNs are DAGs, and all DAGs have a 
topological ordering.  Therefore, G* has an ordering.

New Goal: Find the ordering of G*.

Problem: There are n! orderings.
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Learning Optimal Bayesian Networks via DP

A path from the start 
to the goal induces 
an ordering on the 
variables.

Based on the ordering, 
we can calculate the 
optimal network with 
the recurrences.

We call this the order 
graph.

[Ott et al. 2004, Yuan et al. 2011]
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Learning Optimal Bayesian Networks via DP

A path from the start 
to the goal induces 
an ordering on the 
variables.

Based on the ordering, 
we can calculate the 
optimal network with 
the recurrences.

We call this the order 
graph.

[Ott et al. 2004, Yuan et al. 2011]
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Learning Optimal Bayesian Networks via DP

Problem: There are 
still n! orderings.

Observation: Scoring 
decomposability 
means parent 
selections are 
independent.

Solution: Decouple 
paths into and out
of the nodes.

[Ott et al. 2004, Yuan et al. 2011]
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Memory-efficient Dynamic Programming

Problem: There are 
still 2n nodes.

Observation: Only 
nodes in the 
previous layer are 
required.

Solution: Only store a 
layer as long as 
necessary.

[Malone et al. 2011]
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Memory-efficient Dynamic Programming
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Memory-efficient Dynamic Programming

Problem: There are 
still 2n nodes.

Observation: Only 
nodes in the 
previous layer are 
required.

Solution: Only store a 
layer as long as 
necessary.

[Malone et al. 2011]
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How can we calculate the edge costs?

“Solution”: Search 
through all of the local 
scores and find the best

Problem: Quite expensive 
because we must 
perform this operation 
for all edges.
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How can we efficiently calculate the edge costs?

Theorem: Say PAi ⊂ PA’i and ScoreሺXi|PAiሻ	൐	ScoreሺX|PA’iሻ.  
Then PA’i is not optimal for Xi.

Solution: Before main search, propagate optimal scores 
through the parent graph and store as hash table.

[Yuan et al. 2011]
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Pruning Parent Graphs

Observation: Most parent sets are not optimal.
Problem: We create parent graph nodes anyway. So 

parent graphs are always size 2n‐1.
Solution: Only create nodes for parent sets which 

could possibly be optimal.

[Yuan and Malone 2012]
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Efficient Algorithms for Sparse Parent Graphs

Problem: How can we efficiently lookup BestScore?
Solution: Use a bitwise representation.

Create bitsets of which scores use which parents.

Use these to calculate BestScore, e.g. 

X2,X3 X3 X2 ϕ

5 6 8 10

1 1 1 1

1 1

1 1

[Yuan and Malone 2012]
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Constraints and Sparse Parent Graphs

Observation: In many domains, we know something about 
some of the variables.

We can easily incorporate local constraints by simply 
omitting parent sets which violate the constraints.

If we perform a BestScore calculation and find no set bits, 
then that path is not consistent with the constraints.
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Dynamic Programming Wrap-up

• Scoring function decomposability allows independent 
parent set selections, given an ordering.

• After finding an optimal subnetwork, we no longer 
need information about how we found it.

• These observations allow us to formulate the search 
space in terms of a dynamic programming lattice.

• Efficient data structures are necessary for making 
individual parent set selections.
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• Basics of Bayesian networks (30 minutes)
• Scoring functions (30 minutes)
• Dynamic programming (30 minutes)
 Admissible heuristic search (45 minutes)
• Integer linear programming (60 minutes)
• Empirical evaluations (15 minutes)

Outline
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Graph search formulation

• Share the same principle of dynamic programming
• Formulate the learning task as a shortest path finding problem 

– The shortest path solution to a graph search problem corresponds to an 
optimal Bayesian network

[Yuan, Malone, Wu, IJCAI-11]
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Search graph (Order graph)

ϕ

1 2 3

1,2 1,3 2,3

1,2,3

4

1,4 2,4 3,4

1,2,4 1,3,4 2,3,4

1,2,3,4

Formulation: 
Search space: Variable subsets
Start node:       Empty set
Goal node:       Complete set
Edges:     Select parents
Edge cost:        BestScore(X,U) for  

edge UU{X}

3

2

4

[Yuan, Malone, Wu, IJCAI-11]
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Search graph (Order graph)

ϕ

1 2 3

1,2 1,3 2,3

1,2,3

4

1,4 2,4 3,4

1,2,4 1,3,4 2,3,4

1,2,3,4

Formulation: 
Search space: Variable subsets
Start node:       Empty set
Goal node:       Complete set
Edges:     Select parents
Edge cost:        BestScore(X,U) for  

edge UU{X}
Task: find the shortest path 
between start and goal nodes

2

1

3

4
1,4,3,2

[Yuan, Malone, Wu, IJCAI-11]
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ϕ

A* search: Expands the nodes in 
the order of promisingness: f=g+h

g(U) = Score(U)
h(U) = estimated distance to goal

A* algorithm

[Yuan, Malone, Wu, IJCAI-11]

h

1,2,3,4
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ϕ

1 2 3
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4

[Yuan, Malone, Wu, IJCAI-11]
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ϕ

1 2 3

1,2,3,4
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4g

h

[Yuan, Malone, Wu, IJCAI-11]
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ϕ

1 2 3

3,41,3

1,2,3,4

A* search: Expands the nodes in 
the order of promisingness: f=g+h

g(U) = Score(U)
h(U) = estimated distance to goal

A* algorithm

4

g

h

[Yuan, Malone, Wu, IJCAI-11]

2,3
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ϕ

1 2 3

1,2 1,3

1,2,3,4

A* search: Expands the nodes in 
the order of promisingness: f=g+h

g(U) = Score(U)
h(U) = estimated distance to goal

A* algorithm

4g

h

[Yuan, Malone, Wu, IJCAI-11]

1,4 3,4
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A* search: Expands the nodes in 
the order of promisingness: f=g+h

g(U) = Score(U)
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A* algorithm
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g

[Yuan, Malone, Wu, IJCAI-11]
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A* search: Expands the nodes in 
the order of promisingness: f=g+h

g(U) = Score(U)
h(U) = estimated distance to goal

A* algorithm

4

g

[Yuan, Malone, Wu, IJCAI-11]
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the order of promisingness: f=g+h
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A* algorithm
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g

[Yuan, Malone, Wu, IJCAI-11]
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ϕ

1 2 3

1,2 1,3

1,2,3,4

Simple heuristic

4

[Yuan, Malone, Wu, IJCAI-11]

1,4

1,3,41,2,4

A* search: Expands the nodes in 
the order of promisingness: f=g+h

g(U) = Score(U)
h(U) = XV\U BestScore(X, V\{X})

h({1,4}):

1
2

4
3

3,4

h
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Properties of the simple heuristic

• Theorem: The simple heuristic function h is admissible
– Optimistic estimation
– Guarantees the optimality of A*

• Theorem: h is also consistent
– Monotonic f values
– Consistency => admissibility
– Guarantees the optimality of g cost of any node to be expanded

[Yuan, Malone, Wu, IJCAI-11]
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BFBnB algorithm

Breadth-first branch and bound 
search (BFBnB):
• Motivation:

Exponential-size order&parent graphs

• Observation:
Natural layered structure

• Solution:
Search one layer at a time

ϕ

1 2 3

1,2 1,3 2,3

1,2,3

4

1,4 2,4 3,4

1,2,4 1,3,4 2,3,4

1,2,3,4

[Malone, Yuan, Hansen, UAI-11]
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BFBnB algorithm

Breadth-first branch and bound 
search (BFBnB):
• Motivation:

Exponential-size order&parent graphs

• Observation:
Natural layered structure

• Solution:
Search one layer at a time

ϕ

1 2 3

1,2 1,3 2,3

1,2,3

4

1,4 2,4 3,4

1,2,4 1,3,4 2,3,4

1,2,3,4

[Malone, Yuan, Hansen, UAI-11]
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BFBnB algorithm

ϕ

1 2 3 4

[Malone, Yuan, Hansen, UAI-11]
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ϕ

1 2 3 41 2 3

1,2 1,3 2,3

4

1,4 2,4 3,4

[Malone, Yuan, Hansen, UAI-11]

BFBnB algorithm
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1 2 3

1,2 1,3 2,3

4

1,4 2,4 3,41,2 1,3 2,3

1,2,3

1,4 2,4 3,4

1,2,4 1,3,4 2,3,4

ϕ

1 2 3 4

[Malone, Yuan, Hansen, UAI-11]

BFBnB algorithm
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1,2 1,3 2,3

1,2,3

1,4 2,4 3,4

1,2,4 1,3,4 2,3,41,2,3 1,2,4 1,3,4 2,3,4

1,2,3,4

1 2 3

1,2 1,3 2,3

4

1,4 2,4 3,4

ϕ

1 2 3 4

[Malone, Yuan, Hansen, UAI-11]

BFBnB algorithm
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Pruning in BFBnB

ϕ

1 2 3

1,3 2,3 1,4 2,4

1,2,4 1,3,4 2,3,4

1,2,3,4

• For pruning, estimate an upper bound solution before search
– Can be done using greedy local search

• Prune a node when f-cost > upper bound 

[Malone, Yuan, Hansen, UAI-11]
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Critiquing the simple heuristic

• Drawback of the simple heuristic
– Let each variable to choose optimal parents from all the other variables
– Completely relaxes the acyclic constraint

2

1

3

4

21

3 4

Bayesian network Heuristic estimation

Relaxation
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Potential solution

• Breaking the cycles to obtain tighter heuristic

21

3 4

21

3 4

21

3 4

BestScore(1, {2,3,4})={2,3,4}
+

BestScore(2, {1,3,4})={1,4}

BestScore(1, {2,3,4})
+

BestScore(2, {3,4})={3}

BestScore(1, {3,4})={3,4}
+

BestScore(2, {1,3,4})

min  c({1,2})

[Yuan, Malone, UAI-12]
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k-cycle conflict heuristic

• Compute costs for all 2-variable groups
– Each group, called a pattern, has a tighter score

• Based on dynamically partitioned pattern database [Felner et al. 
2004]

– Avoid cycles for all 3-variable groups
– Avoid cycles for variable groups with size up to k

1,2 1,3 2,3 1,4 2,4 3,4

[Yuan, Malone, UAI-12]
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Compute k-cycle conflict heuristic

• Compute the pattern database with a backward breadth-first 
search in the order graph for k layers

1,2 1,3 2,3 1,4 2,4 3,4

1,2,3 1,2,4 1,3,4 2,3,4

P1: BestScore(1, {2,3,4})+BestScore(2,{3,4}) 

P2: BestScore(2, {1,3,4})+BestScore(1,{3,4}) 
Reverse g cost:

gr ({3,4}) = min(P1, P2)

gr ({3,4}) == c({1,2}) !

1,2,3,4

[Yuan, Malone, UAI-12]
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Computing heuristic value using dynamic PD

• To compute the heuristic for a node, find non-overlapping 
patterns and sum their costs

• Can be formulated as a maximum-weight matching problem 
– O(N3) for k=2 [Papadimitriou&Steiglitz 1982]
– NP-hard for k≥3 [Garey&Johnson 1979]

• Greedy method
– Order the patterns based on amount of improvement
– Greedily find the best available pattern at each step

h({1})= c({2,3}) + c({4})

h({1})= c({2,4}) + c({3})
ϕ

1 2 3 4 h({1})= c({3,4}) + c({2})

[Yuan, Malone, UAI-12]
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Statically partitioned pattern database

• Calculate full pattern databases for non-overlapping static 
groups: {1,2,3,4,5,6}  {1,2,3}, {4,5,6}

1,2,3

1 2 3

1,2 1,3 2,3

ϕ

4,5,6

4 5 6

4,5 4,6 5,6

ϕ

[Yuan, Malone, UAI-12]
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Computing heuristic value using static PD

• Sum costs of pattern databases according to static grouping

1,2,3

1 2 3

1,2 1,3 2,3

ϕ

4,5,6

4 5 6

4,5 4,6 5,6

ϕ

h({1,5,6}) = c({2,3})+c({4}) = gr({1})+gr({5,6})
[Yuan, Malone, UAI-12]
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Properties of k-cycle conflict heuristic

• Theorem: The k-cycle conflict heuristic is admissible
– Dynamic version
– Static version

• Theorem: The static k-cycle conflict heuristic is consistent
• Theorem: The dynamic k-cycle conflict heuristic is consistent

– Given that we use an optimal maximum matching algorithm
– Will lose the consistency property if using an approximation algorithm

[Yuan, Malone, UAI-12]
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Limitation of A* and BFBnB

• A* and BFBnB do not find any solution before the search finishes
• That means it may take a long time before

– finding the optimal solution
– or failing to find any solution

• Algorithms with anytime behavior are desirable
– Find a solution quickly, and keep improving the solution until converging to 

an optimal solution if given enough resources
– If stopped early, the algorithm can simply output the best solution so far
– Have guaranteed error bounds



4-32

Error bounds: A*

• Lower bound: the least f-cost in the open list
• Upper bound: None
• Hence, A* either finds the optimal solution, or no solution at all

 

Optimal solution

Lower bound

T

Score 
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Error bounds: BFBnB

• Lower bound: the least f-cost in the last two layers
• Upper bound: the initial greedy solution

 

Optimal solution

Upper bound

Lower bound

T

Score 
Error bound
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Error bounds: Anytime algorithms

• Lower bound: the least f-cost in the stack
• Upper bound: the current best solution so far

 

Optimal solution

Upper bound

Lower bound

T

Score 

Error bound
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Anytime weighted A*

• Weight the heuristic value h by a constant c>=1.0
– Make smaller h look more promising 

• Perform best-first search until open list is empty

[Malone, Yuan UAI-13]
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ϕ

1 2 3

1,2 1,3

1,2,3,4

Anytime weighted A*

4g

c*h

1,4 3,4

f=g+c*h

[Malone, Yuan UAI-13]



4-37

Anytime repairing A*

• Weight the h by a constant c>=1.0
• Start with a large constant c0

• Decrease c gradually from c0 to 1.0
– Perform A* search
– When finding better paths, delay reexpansions until the next 

iteration

[Malone, Yuan UAI-13]



4-38

ϕ

1 2 3

1,2 1,3

1,2,3,4

Anytime repairing A*

4g

c*h

1,4 3,4

f=g+c*h

[Malone, Yuan UAI-13]
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Anytime window A*

• Use a window size s to limit the open list
– Only include nodes within s steps from the deepest node

• For each s from 1 to total depth
– Perform A* search

[Malone, Yuan UAI-13]
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ϕ

1 2 3

3,41,3

1,2,3,4

Window size s = 1

Anytime window A*

4g

h

2,3

[Malone, Yuan UAI-13]
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• Basics of Bayesian networks (30 minutes)
• Scoring functions (30 minutes)
• Dynamic programming (30 minutes)
• Admissible heuristic search (45 minutes)
 Integer linear programming (60 minutes)
• Empirical evaluations (15 minutes)

Outline



Integer Programming for Bayesian Network Structure
Learning

James Cussens

University of York

IJCAI, 2013-08-05

James Cussens (University of York) IP for BNs IJCAI, 2013-08-05 5-2



Linear programming

The Belgian diet problem

Fat Sugar Salt Cost
Chocolate 4 6 1 5

Chips 6 1 8 4

Needs 12 8 4

Minimise 5x + 4y , subject to:
x , y ≥ 0
4x + 6y ≥ 12
5x + y ≥ 8
x + 8y ≥ 4
x , y ∈ R x

y

James Cussens (University of York) IP for BNs IJCAI, 2013-08-05 5-3



Linear programming

Solving an LP using SCIP

presolved problem has 2 variables

(0 bin, 0 int, 0 impl, 2 cont) and 3 constraints

LP iter|cols |rows | dualbound | primalbound| gap

0 | 0 | 0 | -- | 5.2000e+01 | Inf

2 | 2 | 3 | 1.0625e+01 | 5.2000e+01 | 389.41%

2 | 2 | 3 | 1.0625e+01 | 1.0625e+01 | 0.00%

chocolate 1.125

chips 1.25

James Cussens (University of York) IP for BNs IJCAI, 2013-08-05 5-4



Integer linear programming

Discrete dieting

Fat Sugar Salt Cost
Chocolate 4 6 1 5

Chips 6 1 8 3

Needs 12 8 4

Minimise 5x + 4y , subject to:
x , y ≥ 0
4x + 6y ≥ 12
5x + y ≥ 8
x + 8y ≥ 4
x , y ∈ Z x

y

James Cussens (University of York) IP for BNs IJCAI, 2013-08-05 5-5



Integer linear programming

Discrete dieting — Finding a solution

Fat Sugar Salt Cost
Chocolate 4 6 1 5

Chips 6 1 8 3

Needs 12 8 4

Minimise 5x + 4y , subject to:
x , y ≥ 0
4x + 6y ≥ 12
5x + y ≥ 8
x + 8y ≥ 4
x , y ∈ Z x

y

James Cussens (University of York) IP for BNs IJCAI, 2013-08-05 5-5
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Integer linear programming

Solving an IP using SCIP

presolved problem has 2 variables

(0 bin, 2 int, 0 impl, 0 cont) and 3 constraints

LP iters|cols |rows |cuts | dualbound | p’bnd | gap

0 | 0 | 0 | 0 | -- | 5.2e+01 | Inf

0 | 2 | 3 | 0 | -- | 2.0e+01 | Inf

2 | 2 | 3 | 0 | 1.0625e+01 | 2.0e+01 | 88.24%

2 | 2 | 3 | 0 | 1.0625e+01 | 1.8e+01 | 69.41%

2 | 2 | 3 | 0 | 1.0625e+01 | 1.3e+01 | 22.35%

3 | 2 | 4 | 1 | 1.3000e+01 | 1.3e+01 | 0.00%

3 | 2 | 4 | 1 | 1.3000e+01 | 1.3e+01 | 0.00%

James Cussens (University of York) IP for BNs IJCAI, 2013-08-05 5-6



Integer linear programming

Cutting planes

James Cussens (University of York) IP for BNs IJCAI, 2013-08-05 5-7



Integer linear programming

Cutting planes

James Cussens (University of York) IP for BNs IJCAI, 2013-08-05 5-7



Integer linear programming

Branch-and-bound

James Cussens (University of York) IP for BNs IJCAI, 2013-08-05 5-8



Integer linear programming

Branch-and-bound

James Cussens (University of York) IP for BNs IJCAI, 2013-08-05 5-8



Integer linear programming

(Mixed) Integer (linear) programming

I All variables xi have numeric values.

I Binary (0/1), Integer and Real

I ILP: Linear objective function
∑

cixi
I Pure ILP: All constraints are linear.

Solving the linear relaxation (where integrality restrictions are removed)
provides a crucial upper bound (when maximising).

James Cussens (University of York) IP for BNs IJCAI, 2013-08-05 5-9



Integer linear programming

Branch and cut algorithm

Two problems:
(a) finding an optimal solution
(b) proving it’s optimal

Solving the LP relaxation is fast. So . . .

1. Let x* be the LP solution

2. If there are valid linear inequalities

not satisfied by x*

add them (as cutting planes) and go to 1.

Else if x* is integer-valued then

the current problem is solved

Else branch on a variable with

non-integer value in x*

to create two new sub-IPs.

James Cussens (University of York) IP for BNs IJCAI, 2013-08-05 5-10



BN learning with IP

Encoding graphs with binary ‘family’ variables

I Suppose there are p fully-observed discrete variables V in some
dataset. We want to find a MAP BN (with p vertices) conditional on
this data.

I Can encode any graph by creating a binary variable I (u ←W ) for
each BN variable u ∈ V and each candidate parent set W .

James Cussens (University of York) IP for BNs IJCAI, 2013-08-05 5-11



BN learning with IP

Encoding DAGs

1 2

3

1 2

3

I (1← ∅) = 1, I (2← {1}) = 1, I (3← {1, 2}) = 1

I (1← {3}) = 1, I (2← {1}) = 1, I (3← ∅) = 1

James Cussens (University of York) IP for BNs IJCAI, 2013-08-05 5-12



BN learning with IP

Encoding graphs with binary ‘family’ variables

I Suppose there are p fully-observed discrete variables V in some
dataset. We want to find a MAP BN (with p vertices) conditional on
this data.

I Can encode any graph by creating a binary variable I (u ←W ) for
each BN variable u ∈ V and each candidate parent set W .

I Assume known parameters (pedigrees) or Dirichlet parameter priors
(general BN) and a uniform (or at least ‘decomposable’) structural
prior.

I Each I (u ←W ) has a local score c(u,W ).

Instantiate the I (u ←W ) to maximise:∑
u,W c(u,W )I (u ←W )

subject to the I (u ←W ) representing a DAG.

James Cussens (University of York) IP for BNs IJCAI, 2013-08-05 5-13



BN learning with IP

Ruling out non-DAGs with linear constraints

∀u ∈ V :
∑
W

I (u ←W ) = 1

Where C ⊆ V :
∑
u∈C

∑
W :W∩C=∅

I (u ←W ) ≥ 1 (1)

I Let x∗ be the solution to the LP relaxation. We search for a cluster C
such that x∗ violates (1) and then add (1) to get a new LP.

I Repeat as long as a cutting plane can be found.

I These constraints introduced by Jaakkola et al, AISTATS2010
[Jaakkola et al., 2010].

James Cussens (University of York) IP for BNs IJCAI, 2013-08-05 5-14



BN learning with IP

Linear inequalities for 3-node DAGs (set covering)

I (1← ∅) + I (1← {2}) + I (1← {3}) + I (1← {2, 3}) = 1 (2)

I (2← ∅) + I (2← {1}) + I (2← {3}) + I (2← {1, 3}) = 1 (3)

I (3← ∅) + I (3← {1}) + I (3← {2}) + I (3← {1, 2}) = 1 (4)

I (1← ∅) + I (1← {3}) + I (2← ∅) + I (2← {3}) ≥ 1 (5)

I (1← ∅) + I (1← {2}) + I (3← ∅) + I (3← {2}) ≥ 1 (6)

I (2← ∅) + I (2← {1}) + I (3← ∅) + I (3← {1}) ≥ 1 (7)

I (1← ∅) + I (2← ∅) + I (3← ∅) ≥ 1 (8)

James Cussens (University of York) IP for BNs IJCAI, 2013-08-05 5-15



BN learning with IP

Linear inequalities for 3-node DAGs (knapsack)

I (1← ∅) + I (1← {2}) + I (1← {3}) + I (1← {2, 3}) = 1 (9)

I (2← ∅) + I (2← {1}) + I (2← {3}) + I (2← {1, 3}) = 1 (10)

I (3← ∅) + I (3← {1}) + I (3← {2}) + I (3← {1, 2}) = 1 (11)

I (1← {2}) + I (1← {2, 3}) + I (2← {1}) + I (2← {1, 3}) ≤ 1 (12)

I (1← {3}) + I (1← {2, 3}) + I (3← {1}) + I (3← {1, 2}) ≤ 1 (13)

I (3← {2}) + I (3← {1, 2}) + I (3← {2}) + I (3← {1, 2}) ≤ 1 (14)

I (1← {2}) + I (1← {3}) + I (1← {2, 3})
+I (2← {1}) + I (2← {3}) + I (2← {1, 3})

+I (3← {1}) + I (3← {2}) + I (1← {1, 2}) ≤ 2 (15)

James Cussens (University of York) IP for BNs IJCAI, 2013-08-05 5-16



BN learning with IP

Time for a demo

Do:

I Pigs 100 1 2

I alarm

James Cussens (University of York) IP for BNs IJCAI, 2013-08-05 5-17



Improving efficiency Primal heuristic

Primal heuristics in IP

I A good (typically suboptimal) solution helps prune the search tree.

I Can also help in the root search node due to reduced cost
strengthening.

I If we fail to solve to optimality even more important to have a
reasonable solution.

James Cussens (University of York) IP for BNs IJCAI, 2013-08-05 5-18



Improving efficiency Primal heuristic

Sink finding

I As we learn from [Silander and Myllymäki, 2006] . . .

I Every DAG has at least one sink node (node with no children).

I For this node we can choose the ‘best’ parents without fear of
creating a cycle.

I Once a sink vp selected from V then just worry about learning the
best BN with nodes V \ {vp}.

I Basically the same as finding the best total order (in reverse).

James Cussens (University of York) IP for BNs IJCAI, 2013-08-05 5-19



Improving efficiency Primal heuristic

Using the LP solution to find sinks

I (1←W1,1) I (1←W1,2) . . . I (1←W1,k1)

I (2←W2,1) I (2←W2,2) . . . I (2←W2,k2)

I (3←W3,1) I (3←W3,2) . . . I (3←W3,k3)

. . . . . . . . . . . .

I (p ←Wp,1) I (p ←Wp,2) . . . I (p ←Wp,kp)

I For each variable, order its parent set choices from best to worst.

I (With only the acyclicity constraint) for an optimal BN at least one
BN variable has its best parent set selected.

I Let x∗ be the LP solution and suppose x∗I (2←W2,1)
is closer to 1 than

the best parent set choice for any other variable.

I Select it.

I Suppose 2 is a member of W1,1, W3,2, Wp,1 and Wp,2

James Cussens (University of York) IP for BNs IJCAI, 2013-08-05 5-20
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Improving efficiency Primal heuristic

Using the LP solution to find sinks

I (1←W1,1) I (1←W1,2) . . . I (1←W1,k1)

I(2←W2,1) I (2←W2,2) . . . I (2←W2,k2)

I (3←W3,1) I (3←W3,2) . . . I (3←W3,k3)

. . . . . . . . . . . .

I (p ←Wp,1) I (p ←Wp,2) . . . I (p ←Wp,kp)

I For each variable, order its parent set choices from best to worst.

I (With only the acyclicity constraint) for an optimal BN at least one
BN variable has its best parent set selected.

I Let x∗ be the LP solution and suppose x∗I (2←W2,1)
is closer to 1 than

the best parent set choice for any other variable.

I Select it.

I Suppose 2 is a member of W1,1, W3,2, Wp,1 and Wp,2
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Improving efficiency Primal heuristic

Sink finding primal heuristic

I The BN returned is always best for some total ordering.

I Basically a greedy search for such a BN ‘near’ the LP solution (L1).

I Complications if some IP variables already fixed (due to branching).
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Improving efficiency Tightening the LP relaxation

Implied constraints

I The ‘cluster’ constraints of [Jaakkola et al., 2010] ensure that any
integer solution is a DAG :-)

I But they do not define the convex hull of DAGs. :-(

I Adding in at least some of the facets of the convex hull (at least
those which pass through an optimal DAG) can provide dramatic
improvements.

I SCIP adds some extra cuts automatically (e.g. Gomory).
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Improving efficiency Tightening the LP relaxation

An extra facet for 3-node DAGs

This point:
I (1← {2, 3}) = 1/2, I (1← {∅}) = 1/2
I (2← {1, 3}) = 1/2, I (2← {∅}) = 1/2
I (3← {1, 2}) = 1/2, I (3← {∅}) = 1/2
is an extreme point of the polytope (in R9 ) defined by the 3 convexity
constraints and 4 cluster constraints.
Need to add in:

I (1← {2, 3}) + I (2← {1, 3}) + I (3← {1, 2}) ≤ 1

to remove it (and get the convex hull of 3-node DAGs).
Generalising:

∀C ⊆ V :
∑
u∈C

∑
W :C\{u}⊆W

I (u ←W ) ≤ 1 (16)
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Improving efficiency Tightening the LP relaxation

Effect of tightening the LP relaxation

I Adding in these extra constraints provides a dramatic speed-up,
particularly for larger examples (hundreds of BN nodes).

I Currently experimenting with (generalisations of) facets of the 4-node
DAG polytope.
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Improving efficiency Propagation

Propagation

I If, say, I (1← 2, 3) and I (4← 1) set to 1 then immediately fix e.g.
I (2← 4) to 0.

I Compute transitive closure efficiently!
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Conditional independence constraints

Conditional independence constraints

I Solutions only checked for conditional independence constraints after
they get through integrality and acyclicity constraints.

I If a DAG does not meet a conditional independence constraint a
cutting plane ruling out just that DAG is added.

I There is also some simple presolving and some obvious simple valid
inequalities added at the start.

I Also in next release. (Do demo with citest.constraints)
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Scaling up

Column generation

I Just as one can create constraints on the fly (cutting planes) one can
also create variables dynamically (column generation).

I Think of the not-currently-created variables as being initially fixed to
zero.

I After solving the LP we look for a variable with negative reduced
cost. If we can’t find one we have all the variables we need for an
optimal solution.

I For reduced cost we need the objective coefficient of the new variable
and dual values for all the constraints in which it will appear.
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• Basics of Bayesian networks (30 minutes)
• Scoring functions (30 minutes)
• Dynamic programming (30 minutes)
• Admissible heuristic search (45 minutes)
• Integer linear programming (60 minutes)
 Empirical evaluations (15 minutes)

Outline
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Number of optimal parent sets
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The number of parent sets and their scores stored in the full parent graphs (“Full”), 
the largest layer of the parent graphs in memory-efficient dynamic programming
(“Largest Layer”), and the sparse representation (“Sparse”).
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Comparing DP, GOBNILP, and simple A*

A comparison of the total time (in seconds) for BB, DP, GOBNILP, and A*. 
An “X” means that the corresponding algorithm did not finish within the time 
limit (7,200 seconds) or ran out of memory in the case of A*.
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Factors affecting learning difficulty

The correlation between the search time of the algorithms and several factors
that may affect the difficulty of a learning problem, including the number of
variables, the number of data records in a dataset, and the number of optimal
parent sets.
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Performance of BFBnB

A comparison of the total time (in seconds) for GOBNILP,  A*, and BFBnB. 
An “X” means that the corresponding algorithm did not finish within the time 
limit (7,200 seconds) or ran out of memory in the case of A*.
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Dynamic vs static k-cycle conflict heuristic
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A comparison of A* enhanced with different heuristics (simple heuristic, dynamic
pattern database with k = 2, 3, and 4, and static pattern databases with groupings
10-10-9 and 15-14 for the Flag dataset).
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Enhancing A* with k-cycle conflict heuristic

A comparison of the search time (in seconds) for GOBNILP, A*, BFBnB, and 
A* with pattern database heuristic. An “X” means that the corresponding algorithm 
did not finish within the time limit (7,200 seconds) or ran out of memory in the 
case of A*.
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Anytime behavior comparison

A comparison of the convergence of upper bounds (UB) and lower bounds (LB) for 
Anytime Window A* and ILP on random networks with 29 variables and {3, 6} maximum 
parents per variable. Then, from each network, we generated datasets with {1k, 5k, 10k, 
20k} data points. We put a 2-hour (7200 seconds) time limit on all the algorithms.
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Average parent size in search graph

Average parent set size of all the nodes in each layer of the order graph for the “29.*.5k” 
datasets.



GOBNILP results

Pre-release version of GOBNILP 1.4

Name p N Lim Vars Nodes Time To Best

insurance 27 100 3 277 1 0.7 0.7
insurance 27 1000 3 773 1 1.3 1.2
insurance 27 10000 3 3652 3 6.3 6.3
Water 32 100 3 479 1 3.7 3.7
Water 32 1000 3 573 1 6.6 6.6
Water 32 10000 3 961 1 24.0 24.0
Mildew 35 100 3 3506 1 1.0 1.0
Mildew 35 1000 3 148 1 0.4 0.4
Mildew 35 10000 3 456 1 0.6 0.6
alarm 37 100 3 906 1 1.4 1.4
alarm 37 1000 3 1927 1 4.3 4.3
alarm 37 10000 3 6472 1625 122.8 18.8
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GOBNILP results

Pre-release version of GOBNILP 1.4

Name p N Lim Vars Nodes Time To Best

hailfinder 56 100 3 217 1 0.8 0.8
hailfinder 56 1000 3 758 1 3.4 3.4
hailfinder 56 10000 3 3768 17 29.2 28.9
carpo 60 100 3 5068 343 289.4 277.1
carpo 60 1000 3 3826 8 49.3 49.2
carpo 60 10000 3 16390 2327 689.4 436.5
Diabetes 413 100 2 4384 1 167.5 167.5
Pigs 441 100 2 2612 1 16.1 16.1
Pigs 441 1000 2 15847 1 148.7 148.7
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GOBNILP results

Details

I All runs done using a single core of 2.5 GHz machine.

I Times in the preceding tables do not include the time taken to
produce the local BDeu scores—this took 2082s for ‘Pigs’ with 1000
datapoints.

I Further benchmarks available at the GOBNILP home page:
http://www.cs.york.ac.uk/aig/sw/gobnilp/
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GOBNILP results

What works (eventually) and what doesn’t

I For ≈ 12 BN variables, exact learning is easy and quick, and there is
no node to restrict the size of parent sets.

I For the 724 node ‘Link’ BN we produced millions of local scores . . .

I . . . but GOBNILP ran out of memory when we tried to learn from
them.

I With a parent set limit of 2, we have learned BNs with 1614 nodes . . .

I . . . however, this takes between 8 hours and 3 days to solve,
depending on the dataset.

James Cussens (University of York) IP for BNs IJCAI, 2013-08-05 6-13



6-14

Summary

• A tutorial on optimal algorithms for learning Bayesian network 
structures

• Topics covered:
– Basics of Bayesian networks (30 minutes)
– Scoring functions (30 minutes)
– Dynamic programming (30 minutes)
– Admissible heuristic search (45 minutes)
– Integer linear programming (60 minutes)
– Evaluation (15 minutes)

• Software packages available from
– URLearning Java software: http://url.cs.qc.cuny.edu//software/URLearning.html
– URLearning Weka package: http://url.cs.qc.cuny.edu//software/URLearning.html
– GOBNILP: http://www.cs.york.ac.uk/aig/sw/gobnilp/
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