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Planning
What to do to achieve your objectives?

Which actions to take to achieve your objectives?
Number of agents

single agent, perfect information: s-t-reachability in succinct
graphs
+ nondeterminism/adversary: and-or tree search
+ partial observability: and-or search in the space of beliefs

Time
asynchronous or instantaneous actions (integer time, unit
duration)
rational/real time, concurrency

Objective
Reach a goal state.
Maximize probability of reaching a goal state.
Maximize (expected) rewards.
temporal goals (e.g. LTL)
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Hierarchy of Planning Problems

classical (PSPACE [GW83, Loz88, LB90, Byl94])

temporal (EXPSPACE [Rin07])conditional/MDP (EXP [Lit97])

partially observable (2-EXPTIME [Rin04a])

POMDP (undecidable [MHC03])
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Classical (Deterministic, Sequential) Planning

states and actions expressed in terms of state variables
single initial state, that is known
all actions deterministic
actions taken sequentially, one at a time
a goal state (expressed as a formula) reached in the end

Deciding whether a plan exists is PSPACE-complete.
With a polynomial bound on plan length, NP-complete.
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Domain-Independent Planning

What is domain-independent?

general language for representing problems (e.g. PDDL)
general algorithms to solve problems expressed in it

Advantages and disadvantages:
+ Representation of problems at a high level
+ Fast prototyping
+ Often easy to modify and extend
- Potentially high performance penalty w.r.t. specialized

algorithms
- Trade-off between generality and efficiency
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Domain-Specific Planning

What is domain-specific?

application-specific representation
application-specific constraints/propagators
application-specific heuristics

There are some planning systems that have aspects of these, but
mostly this means: implement everything from scratch.
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Domain-Dependent vs. -Independent Planning
Procedure

Formalize in PDDL

Try off-the-shelf planners

Problem solved?

Go domain-specific Done
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Related Problems, Reductions

planning, diagnosis [SSL+95], model-checking (verification)

planning

model-checking

DES diagnosis

state-spaceSAT/CSP/IP symbolic BDD
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How to Represent Planning Problems?

planning

transition-
based

SMV Petri Nets

PDDL

constraint-
based

SAT

CSP

Answer-Set
Programs
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PDDL - Planning Domain Description
Language

Defined in 1998 [McD98], with several extensions later.
Lisp-style syntax
Widely used in the planning community.
Most basic version with Boolean state variables only.
Action sets expressed as schemata instantiated with objects.

(:action analyze-2
:parameters (?s1 ?s2 - segment ?c1 ?c2 - car)
:precondition (and (CYCLE-2-WITH-ANALYSIS ?s1 ?s2)

(on ?c1 ?s1))
:effect (and (not (on ?c1 ?s1))

(on ?c2 ?s1)
(analyzed ?c1)
(increase (total-cost) 3)))
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States

States are valuations of state variables.

Example

State variables are
LOCATION: {0, . . . , 1000}

GEAR: {R, 1, 2, 3, 4, 5}
FUEL: {0, . . . , 60}

SPEED: {−20, . . . , 200}
DIRECTION: {0, . . . , 359}

One state is
LOCATION =312

GEAR = 4
FUEL = 58

SPEED =110
DIRECTION = 90
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State-space transition graphs
Blocks world with three blocks
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Actions
How values of state variables change

General form
precondition: A=1 ∧ C=1
effect: A := 0; B := 1; C := 0;

STRIPS representation

PRE: A, C
ADD: B
DEL: A, C

Petri net

A

C

B

action
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Weaknesses in Existing Languages

High-level concepts not easily/efficiently expressible.
Examples: graph connectivity, transitive closure.
Limited or no facilities to express domain-specific information
(control, pruning, heuristics).
The notion of classical planning is limited:

Real world rarely a single run of the sense-plan-act cycle.
Main issue often uncertainty, costs, or both.
Often rational time and concurrency are critical.
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Formalization of Planning in This Tutorial

A problem instance in (classical) planning consists of the
following.

set X of state variables
set A of actions 〈p, e〉 where

p is the precondition (a set of literals over X)
e is the effects (a set of literals over X)

initial state I : X → {0, 1} (a valuation of X)
goals G (a set of literals over X)
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The planning problem

An action a = 〈p, e〉 is applicable in state s iff s |= p.
The successor state s′ = execa(s) is defined by

s′ |= e

s(x) = s′(x) for all x ∈ X that don’t occur in e.

Problem
Find a1, . . . , an such that
execan

(execan−1
(· · · execa2

(execa1
(I)) · · ·)) |= G?



Introduction

State-Space
Search

SAT

Symbolic search

Planners

Evaluation

References

Development of state-space search methods
19

68

19
86

19
88

19
90

19
92

19
94

19
96

19
98

20
00

A∗
partial-order reduction

symmetry reduction

BDDs
Symbolic Model-Checking

DNNF

Planning as SAT
SATPLAN

GRASP
SATZ
Bounded Model-Checking
Chaff
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Symbolic Representations vs. Fwd and Bwd
Search

symbolic data structures (BDD, DNNF, ...)

SAT

forward

backward

singleton backward

1 symbolic data structures
2 SAT
3 state-space search
4 others: partial-order planning [MR91] (until 1995)
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Explicit State-Space Search

The most basic search method for transition systems
Very efficient for small state spaces (1 million states)
Easy to implement
Very well understood
Pruning methods:

symmetry reduction [Sta91, ES96]
partial-order reduction [God91, Val91]
lower-bounds / heuristics, for informed search [HNR68]
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State Representation

Each state represented explicitly⇒ compact state representation
important

Boolean (0, 1) state variables represented by one bit
Inter-variable dependencies enable further compaction:

¬(at(A,L1)∧at(A,L2)) always true
automatic recognition of invariants [BF97, Rin98, Rin08]
n exclusive variables x1, . . . , xn represented by
1 + blog2(n− 1)c bits
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Search Algorithms

uninformed/blind search: depth-first, breadth-first, ...
informed search: “best first” search (always expand best
state so far)
informed search: local search algorithms such as simulated
annealing, tabu search and others [KGJV83, DS90, Glo89]
(little used in planning)
optimal algorithms: A∗ [HNR68], IDA∗ [Kor85]
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Symmetry Reduction [Sta91, ES96]

Idea
1 Define an equivalence relation ∼ on the set of all states:
s1 ∼ s2 means that state s1 is symmetric with s2.

2 Only one state sC in each equivalence class C needs to be
considered.

3 If state s ∈ C with s 6= [sC ] is encountered, replace it with sC .

Example

States P (A) ∧ ¬P (B) ∧ P (C) and ¬P (A) ∧ P (B) ∧ P (C) are
symmetric because of the permutation A 7→ B,B 7→ A,C 7→ C.
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Symmetry Reduction
Example: 11 states, 3 equivalence classes
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Symmetry Reduction
Example: 11 states, 3 equivalence classes
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Partial Order Reduction
Stubborn sets and related methods

Idea [God91, Val91]

Independent actions unnecessary to consider in all orderings, e.g.
both A1, A2 and A2, A1.

Example

Let there be lamps 1, 2, . . . , n which can be turned on. There are
no other actions. One can restrict to plans in which lamps are
turned on in the ascending order: switching lamp n after lamp
m > n needless.a

aThe same example is trivialized also by symmetry reduction!
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Heuristics for Classical Planning

The most basic heuristics widely used for non-optimal planning:
hmax [BG01, McD96] best-known admissible heuristic
h+ [BG01] still state-of-the-art
hrelax [HN01] often more accurate, but performs like h+
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Definition of hmax, h+ and hrelax

Basic insight: estimate distances between possible state
variable values, not states themselves.

gs(l) =

{
0 if s |= l
min

a with effect p
(1 + gs(prec(a)))

h+ defines gs(L) =
∑

l∈L gs(l) for sets S.
hmax defines gs(L) = maxl∈L gs(l) for sets S.
hrelax counts the number of actions in computation of hmax.
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Computation of hmax
Tractor example

1 Tractor moves:
from 1 to 2: T12 = 〈T1, {T2,¬T1}〉
from 2 to 1: T21 = 〈T2, {T1,¬T2}〉
from 2 to 3: T23 = 〈T2, {T3,¬T2}〉
from 3 to 2: T32 = 〈T3, {T2,¬T3}〉

2 Tractor pushes A:
from 2 to 1: A21 = 〈T2 ∧A2, {T1, A1,¬T2,¬A2}〉
from 3 to 2: A32 = 〈T3 ∧A3, {T2, A2,¬T3,¬A3}〉

3 Tractor pushes B:
from 2 to 1: B21 = 〈T2 ∧B2, {T1, B1,¬T2,¬B2}〉
from 3 to 2: B32 = 〈T3 ∧B3, {T2, B2,¬T3,¬B3}〉
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Computation of hmax
Tractor example

t T1 T2 T3 A1 A2 A3 B1 B2 B3
0 T F F F F T F F T
1 TF TF F F F T F F T
2 TF TF TF F F T F F T
3 TF TF TF F TF TF F TF TF
4 TF TF TF TF TF TF TF TF TF

Apply T12 = 〈T1, {T2,¬T1}〉
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Computation of hmax
Tractor example

t T1 T2 T3 A1 A2 A3 B1 B2 B3
0 T F F F F T F F T
1 TF TF F F F T F F T
2 TF TF TF F F T F F T
3 TF TF TF F TF TF F TF TF
4 TF TF TF TF TF TF TF TF TF

Apply A32 = 〈T3 ∧A3, {T2, A2,¬T3,¬A3}〉
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Computation of hmax
Tractor example

t T1 T2 T3 A1 A2 A3 B1 B2 B3
0 T F F F F T F F T
1 TF TF F F F T F F T
2 TF TF TF F F T F F T
3 TF TF TF F TF TF F TF TF
4 TF TF TF TF TF TF TF TF TF

Apply B32 = 〈T3 ∧B3, {T2, B2,¬T3,¬B3}〉
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Computation of hmax
Tractor example

t T1 T2 T3 A1 A2 A3 B1 B2 B3
0 T F F F F T F F T
1 TF TF F F F T F F T
2 TF TF TF F F T F F T
3 TF TF TF F TF TF F TF TF
4 TF TF TF TF TF TF TF TF TF

Apply A21 = 〈T2 ∧A2, {T1, A1,¬T2,¬A2}〉
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Computation of hmax
Tractor example

t T1 T2 T3 A1 A2 A3 B1 B2 B3
0 T F F F F T F F T
1 TF TF F F F T F F T
2 TF TF TF F F T F F T
3 TF TF TF F TF TF F TF TF
4 TF TF TF TF TF TF TF TF TF

Apply B21 = 〈T2 ∧B2, {T1, B1,¬T2,¬B2}〉
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Computation of hmax
Tractor example

t T1 T2 T3 A1 A2 A3 B1 B2 B3
0 T F F F F T F F T
1 TF TF F F F T F F T
2 TF TF TF F F T F F T
3 TF TF TF F TF TF F TF TF
4 TF TF TF TF TF TF TF TF TF

Distance of A1 ∧B1 is 4.



Introduction

State-Space
Search
Symmetry Reduction

Part. Order Red.

Heuristics

Heuristics

SAT

Symbolic search

Planners

Evaluation

References

hmax Underestimates

Example

Estimate for lamp1on ∧ lamp2on ∧ lamp3on with

〈>, {lamp1on}〉
〈>, {lamp2on}〉
〈>, {lamp3on}〉

is 1. Actual shortest plan has length 3.
By definition, hmax(G1 ∧ · · · ∧Gn) is the maximum of
hmax(G1), . . . , hmax(Gn).
If goals are independent, the sum of the estimates is more
accurate.
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Computation of h+

Tractor example

t T1 T2 T3 A1 A2 A3 B1 B2 B3
0 T F F F F T F F T
1 TF TF F F F T F F T
2 TF TF TF F F T F F T
3 TF TF TF F TF TF F TF TF
4 TF TF TF F TF TF F TF TF
5 TF TF TF TF TF TF TF TF TF

Apply A21 = 〈T2 ∧A2, {T1, A1,¬T2,¬A2}〉.
h+(T2 ∧A2) is 1+3.
h+(A1) is 1+3+1 = 5 (hmax gives 4.)
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Computation of h+

Tractor example

t T1 T2 T3 A1 A2 A3 B1 B2 B3
0 T F F F F T F F T
1 TF TF F F F T F F T
2 TF TF TF F F T F F T
3 TF TF TF F TF TF F TF TF
4 TF TF TF F TF TF F TF TF
5 TF TF TF TF TF TF TF TF TF

h+ of A1 ∧B1 is 5 + 5 = 10.
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Computation of hrelax
Motivation

estimate for a ∧ b ∧ c
actions max sum actual
〈>, {a, b, c}〉 1 3 1
〈>, {a}〉, 〈>, {b}〉, 〈>, {c}〉 1 3 3

Better estimates with hrelax (but: performance is similar to
h+).
Application: directing search with preferred actions
[Vid04, RH09]
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Computation of hrelax

t T1 T2 T3 A1 A2 A3 B1 B2 B3
0 T F F F F T F F T
1 TF TF F F F T F F T
2 TF TF TF F F T F F T
3 TF TF TF F TF TF F TF TF
4 TF TF TF TF TF TF TF TF TF

Estimate for A1 ∧B1 with relaxed plans:
t relaxed plan
0
1
2
3
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Computation of hrelax

t T1 T2 T3 A1 A2 A3 B1 B2 B3
0 T F F F F T F F T
1 TF TF F F F T F F T
2 TF TF TF F F T F F T
3 TF TF TF F TF TF F TF TF
4 TF TF TF TF TF TF TF TF TF

Estimate for A1 ∧B1 with relaxed plans:
t relaxed plan
0
1
2
3 A21, B21
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Computation of hrelax

t T1 T2 T3 A1 A2 A3 B1 B2 B3
0 T F F F F T F F T
1 TF TF F F F T F F T
2 TF TF TF F F T F F T
3 TF TF TF F TF TF F TF TF
4 TF TF TF TF TF TF TF TF TF

Estimate for A1 ∧B1 with relaxed plans:
t relaxed plan
0
1
2
3 A21, B21
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Computation of hrelax

t T1 T2 T3 A1 A2 A3 B1 B2 B3
0 T F F F F T F F T
1 TF TF F F F T F F T
2 TF TF TF F F T F F T
3 TF TF TF F TF TF F TF TF
4 TF TF TF TF TF TF TF TF TF

Estimate for A1 ∧B1 with relaxed plans:
t relaxed plan
0
1
2 A32, B32
3 A21, B21
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Computation of hrelax

t T1 T2 T3 A1 A2 A3 B1 B2 B3
0 T F F F F T F F T
1 TF TF F F F T F F T
2 TF TF TF F F T F F T
3 TF TF TF F TF TF F TF TF
4 TF TF TF TF TF TF TF TF TF

Estimate for A1 ∧B1 with relaxed plans:
t relaxed plan
0
1
2 A32, B32
3 A21, B21
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Computation of hrelax

t T1 T2 T3 A1 A2 A3 B1 B2 B3
0 T F F F F T F F T
1 TF TF F F F T F F T
2 TF TF TF F F T F F T
3 TF TF TF F TF TF F TF TF
4 TF TF TF TF TF TF TF TF TF

Estimate for A1 ∧B1 with relaxed plans:
t relaxed plan
0
1 T23
2 A32, B32
3 A21, B21
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Computation of hrelax

t T1 T2 T3 A1 A2 A3 B1 B2 B3
0 T F F F F T F F T
1 TF TF F F F T F F T
2 TF TF TF F F T F F T
3 TF TF TF F TF TF F TF TF
4 TF TF TF TF TF TF TF TF TF

Estimate for A1 ∧B1 with relaxed plans:
t relaxed plan
0
1 T23
2 A32, B32
3 A21, B21
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Computation of hrelax

t T1 T2 T3 A1 A2 A3 B1 B2 B3
0 T F F F F T F F T
1 TF TF F F F T F F T
2 TF TF TF F F T F F T
3 TF TF TF F TF TF F TF TF
4 TF TF TF TF TF TF TF TF TF

Estimate for A1 ∧B1 with relaxed plans:
t relaxed plan
0 T12
1 T23
2 A32, B32
3 A21, B21
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Computation of hrelax

t T1 T2 T3 A1 A2 A3 B1 B2 B3
0 T F F F F T F F T
1 TF TF F F F T F F T
2 TF TF TF F F T F F T
3 TF TF TF F TF TF F TF TF
4 TF TF TF TF TF TF TF TF TF

Estimate for A1 ∧B1 with relaxed plans:
t relaxed plan
0 T12
1 T23
2 A32, B32
3 A21, B21

estimate = number of actions in relaxed plan = 6
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Comparison of the Heuristics

For the Tractor example:
actions in the shortest plan: 8
hmax yields 4 (never overestimates).
h+ yields 10 (may under or overestimate).
hrelax yield 6 (may under or overestimate).

The sum-heuristic and the relaxed plan heuristic are used in
practice for non-optimal planners.
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Preferred Actions

h+ and hrelax boosted with preferred/helpful actions.
Preferred actions on the first level t = 0 in a relaxed plan.
Several possibilities:

Always expand with a preferred action when possible [Vid04].
A tie-breaker when the heuristic values agree [RH09].

Planners based on explicit state-space search use them:
YAHSP, LAMA.
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Performance of State-Space Search Planners
Planning Competition Problems
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Heuristics for Optimal Planning

Admissible heuristics are needed for finding optimal plans, e.g
with A∗ [HNR68]. Scalability much poorer.

Pattern Databases [CS96, Ede00]

Abstract away many/most state variables, and use the length/cost
of the optimal solution to the remaining problem as an estimate.

Generalized Abstraction (merge and shrink) [DFP09, HHH07]

A generalization of pattern databases, allowing more complex
aggregation of states (not just identification of ones agreeing on a
subset of state variables.)

Landmark-cut [HD09] has been doing well with planning
competition problems.
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Planning with SAT
Background

Proposed by Kautz and Selman [KS92].
Idea as in Cook’s proof of NP-hardness of SAT [Coo71]:
encode each step of a plan as a propositional formula.
Intertranslatability of NP-complete problems⇒ reductions to
many other problems possible.

Related solution methods

constraint satisfaction (CSP) [vBC99, DK01]
NM logic programs / answer-set programs [DNK97]

Translations from SAT into other formalisms often simple. In terms
of performance, SAT is usually the best choice.
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Transition relations in propositional logic

State variables are
X = {a, b, c}.

(¬a ∧ b ∧ c ∧ ¬a′ ∧ b′ ∧ ¬c′)∨
(¬a ∧ b ∧ ¬c ∧ a′ ∧ b′ ∧ ¬c′)∨
(¬a ∧ ¬b ∧ c ∧ a′ ∧ b′ ∧ c′)∨
(a ∧ b ∧ c ∧ a′ ∧ b′ ∧ ¬c′)

The corresponding matrix is
000 001 010 011 100 101 110 111

000 0 0 0 0 0 0 0 0
001 0 0 0 0 0 0 0 1
010 0 0 0 0 0 0 1 0
011 0 0 1 0 0 0 0 0
100 0 0 0 0 0 0 0 0
101 0 0 0 0 0 0 0 0
110 0 0 0 0 0 0 0 0
111 0 0 0 0 0 0 1 0

000

001
010

011

100

101
110

111
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Encoding of Actions as Formulas
for Sequential Plans

An action j corresponds to the conjunction of the precondition
Pj@t and

xi@(t+ 1)↔ Fi(x1@t, . . . , xn@t)

for all i ∈ {1, . . . , n}. Denote this by Ej@t.

Example (move-from-X-to-Y)

precond︷ ︸︸ ︷
atX@t ∧

effects︷ ︸︸ ︷
(atX@(t+ 1)↔ ⊥) ∧ (atY@(t+ 1)↔ >)
∧(atZ@(t+ 1)↔ atZ@t) ∧ (atU@(t+ 1)↔ atU@t)

Choice between actions 1, . . . ,m expressed by the formula

R@t = E1@t ∨ · · · ∨ Em@t.
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Finding a Plan with SAT

Let
I be a formula expressing the initial state, and
G be a formula expressing the goal states.

Then a plan of length T exists iff

I@0 ∧
T−1∧
t=0

R@t ∧GT

is satisfiable.

Remark
Most SAT solvers require formulas to be in CNF. There are
efficient transformations to achieve this [Tse62, JS05, MV07].
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Parallel Plans: Motivation

Don’t represent all intermediate
states of a sequential plan.
Ignore relative ordering of
consecutive actions.
Reduced number of explicitly
represented states⇒ smaller
formulas

state at t+ 1

state at t
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Parallel plans (∀-step plans)
Kautz and Selman 1996

Allow actions a1 = 〈p1, e1〉 and a2 = 〈p2, e2〉 in parallel whenever
they don’t interfere, i.e.

both p1 ∪ p2 and e1 ∪ e2 are consistent, and
both e1 ∪ p2 and e2 ∪ p1 are consistent.

Theorem

If a1 = 〈p1, e1〉 and a2 = 〈p1, e1〉 don’t interfere and s is a state
such that s |= p1 and s |= p2, then
execa1

(execa2
(s)) = execa2

(execa1
(s)).
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∀-step plans: encoding

Define R∀@t as the conjunction of

x@(t+ 1)↔ ((x@t ∧ ¬a1@t ∧ · · · ∧ ¬ak@t) ∨ a′1@t ∨ · · · ∨ a′k′@t)

for all x ∈ X, where a1, . . . , ak are all actions making x false, and
a′1, . . . , a

′
k′ are all actions making x true, and

a@t→ l@t for all l in the precondition of a,

and
¬(a@t ∧ a′@t) for all a and a′ that interfere.

This encoding is quadratic due to the interference clauses.
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∀-step plans: linear encoding
Rintanen et al. 2006 [RHN06]

Action a with effect l disables all actions with precondition l,
except a itself.
This is done in two parts: disable actions with higher index,
disable actions with lower index.

a1 a2 a3 a4 a5

v2 v4 v5

w1 w2 w4

This is needed for every literal.
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∃-step plans
Dimopoulos et al. 1997 [DNK97]

Allow actions {a1, . . . , an} in parallel if they can be executed in at
least one order.⋃n

i=1 pi is consistent.⋃n
i=1 ei is consistent.

There is a total ordering a1, . . . , an such that ei ∪ pj is
consistent whenever i ≤ j: disabling an action earlier in the
ordering is allowed.

Several compact encodings exist [RHN06].
Fewer time steps are needed than with ∀-step plans. Sometimes
only half as many.
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∃-step plans: linear encoding
Rintanen et al. 2006 [RHN06]

Choose an arbitrary fixed ordering of all actions a1, . . . , an.

Action a with effect l disables all later actions with precondition l.

a1 a2 a3 a4 a5

v2 v4 v5

This is needed for every literal.
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Disabling graphs
Rintanen et al. 2006 [RHN06]

Define a disabling graph with actions as nodes and with an arc
from a1 to a2 (a1 disables a2) if p1 ∪ p2 and e1 ∪ e2 are consistent
and e1 ∪ p2 is inconsistent.

The test for valid execution orderings can be limited to strongly
connected components (SCC) of the disabling graph.

In many structured problems all SCCs are singleton sets.
=⇒ No tests for validity of orderings needed during SAT solving.
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Summary of Notions of Plans

plan type reference comment
sequential [KS92] one action per time point
∀-parallel [BF97, KS96] parallel actions independent
∃-parallel [DNK97, RHN06] executable in at least one order

The last two expressible in terms of the relation disables
restricted to applied actions:

∀-parallel plans: the disables relation is empty.
∃-parallel plans: the disables relation is acyclic.
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Search through Horizon Lengths

The planning problem is reduced to the satisfiability tests for

Φ0 = I@0 ∧G@0
Φ1 = I@0 ∧R@0 ∧G@1
Φ2 = I@0 ∧R@0 ∧R@1 ∧G@2
Φ3 = I@0 ∧R@0 ∧R@1 ∧R@2 ∧G@3
...
Φu = I@0 ∧R@0 ∧R@1 ∧ · · ·R@(u− 1) ∧G@u

where u is the maximum possible plan length.

Q: How to schedule these satisfiability tests?
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Search through Horizon Lengths

algorithm reference comment
sequential [KS92, KS96] slow, guarantees min. horizon
binary search [SS07] prerequisite: length UB
n processes [Rin04b, Zar04] fast, more memory needed
geometric [Rin04b] fast, more memory needed

sequential: first test Φ0, then Φ1, then Φ2, . . .
This is breadth-first search / iterative deepening.
Guarantees shortest horizon length, but is slow.

parallel strategies: solve several horizon lengths
simultaneously

depth-first flavor
usually much faster
no guarantee of minimal horizon length
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Solving the SAT Problem

SAT problems obtained from planning are solved by

generic SAT solvers
Mostly based on Conflict-Driven Clause Learning (CDCL)
[MMZ+01].
Extremely good on hard combinatorial planning problems.
Not designed for solving the extremely large but “easy”
formulas (arising in some types of benchmark problems).

specialized SAT solvers [Rin10b, Rin10a]
Replace standard CDCL heuristics with planning-specific ones.
For certain problem classes substantial improvement
New research topic: lots of unexploited potential
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Solving the SAT Problem
Example

A
B
C

D
E

A
B
C
D
E

initial state goal state

Problem solved almost without search:
Formulas for lengths 1 to 4 shown unsatisfiable without any
search.
Formula for plan length 5 is satisfiable: 3 nodes in the search
tree.
Plans have 5 to 7 operators, optimal plan has 5.
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Solving the SAT Problem
Example

0 1 2 3 4 5
clear(a) F F
clear(b) F F
clear(c) T T F F
clear(d) F T T F F F
clear(e) T T F F F F
on(a,b) F F F T
on(a,c) F F F F F F
on(a,d) F F F F F F
on(a,e) F F F F F F
on(b,a) T T F F
on(b,c) F F T T
on(b,d) F F F F F F
on(b,e) F F F F F F
on(c,a) F F F F F F
on(c,b) T F F F
on(c,d) F F F T T T
on(c,e) F F F F F F
on(d,a) F F F F F F
on(d,b) F F F F F F
on(d,c) F F F F F F
on(d,e) F F T T T T
on(e,a) F F F F F F
on(e,b) F F F F F F
on(e,c) F F F F F F
on(e,d) T F F F F F

ontable(a) T T T F
ontable(b) F F F F
ontable(c) F F F F
ontable(d) T T F F F F
ontable(e) F T T T T T

0 1 2 3 4 5
F F F T T
F F T T F
T T T T F F
F T T F F F
T T F F F F
F F F F F T
F F F F F F
F F F F F F
F F F F F F
T T T F F
F F F F T T
F F F F F F
F F F F F F
F F F F F F
T T F F F
F F F T T T
F F F F F F
F F F F F F
F F F F F F
F F F F F F
F F T T T T
F F F F F F
F F F F F F
F F F F F F
T F F F F F
T T T T T F
F F F F F
F F F F F
T T F F F F
F T T T T T

0 1 2 3 4 5
F F F T T T
F F T T T F
T T T T F F
F T T F F F
T T F F F F
F F F F F T
F F F F F F
F F F F F F
F F F F F F
T T T F F F
F F F F T T
F F F F F F
F F F F F F
F F F F F F
T T F F F F
F F F T T T
F F F F F F
F F F F F F
F F F F F F
F F F F F F
F F T T T T
F F F F F F
F F F F F F
F F F F F F
T F F F F F
T T T T T F
F F F T F F
F F T F F F
T T F F F F
F T T T T T

1 State variable values inferred
from initial values and goals.

2 Branch: ¬clear(b)1.
3 Branch: clear(a)3.
4 Plan found:

0 1 2 3 4
fromtable(a,b)FFFFT
fromtable(b,c)FFFTF
fromtable(c,d)FFTFF
fromtable(d,e)FTFFF

totable(b,a)FFTFF
totable(c,b)FTFFF
totable(e,d)TFFFF
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Solving the SAT Problem
Example

0 1 2 3 4 5
clear(a) F F
clear(b) F F
clear(c) T T F F
clear(d) F T T F F F
clear(e) T T F F F F
on(a,b) F F F T
on(a,c) F F F F F F
on(a,d) F F F F F F
on(a,e) F F F F F F
on(b,a) T T F F
on(b,c) F F T T
on(b,d) F F F F F F
on(b,e) F F F F F F
on(c,a) F F F F F F
on(c,b) T F F F
on(c,d) F F F T T T
on(c,e) F F F F F F
on(d,a) F F F F F F
on(d,b) F F F F F F
on(d,c) F F F F F F
on(d,e) F F T T T T
on(e,a) F F F F F F
on(e,b) F F F F F F
on(e,c) F F F F F F
on(e,d) T F F F F F

ontable(a) T T T F
ontable(b) F F F F
ontable(c) F F F F
ontable(d) T T F F F F
ontable(e) F T T T T T

0 1 2 3 4 5
F F F T T
F F T T F
T T T T F F
F T T F F F
T T F F F F
F F F F F T
F F F F F F
F F F F F F
F F F F F F
T T T F F
F F F F T T
F F F F F F
F F F F F F
F F F F F F
T T F F F
F F F T T T
F F F F F F
F F F F F F
F F F F F F
F F F F F F
F F T T T T
F F F F F F
F F F F F F
F F F F F F
T F F F F F
T T T T T F
F F F F F
F F F F F
T T F F F F
F T T T T T

0 1 2 3 4 5
F F F T T T
F F T T T F
T T T T F F
F T T F F F
T T F F F F
F F F F F T
F F F F F F
F F F F F F
F F F F F F
T T T F F F
F F F F T T
F F F F F F
F F F F F F
F F F F F F
T T F F F F
F F F T T T
F F F F F F
F F F F F F
F F F F F F
F F F F F F
F F T T T T
F F F F F F
F F F F F F
F F F F F F
T F F F F F
T T T T T F
F F F T F F
F F T F F F
T T F F F F
F T T T T T

1 State variable values inferred
from initial values and goals.

2 Branch: ¬clear(b)1.
3 Branch: clear(a)3.
4 Plan found:

0 1 2 3 4
fromtable(a,b)FFFFT
fromtable(b,c)FFFTF
fromtable(c,d)FFTFF
fromtable(d,e)FTFFF

totable(b,a)FFTFF
totable(c,b)FTFFF
totable(e,d)TFFFF
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Solving the SAT Problem
Example

0 1 2 3 4 5
clear(a) F F
clear(b) F F
clear(c) T T F F
clear(d) F T T F F F
clear(e) T T F F F F
on(a,b) F F F T
on(a,c) F F F F F F
on(a,d) F F F F F F
on(a,e) F F F F F F
on(b,a) T T F F
on(b,c) F F T T
on(b,d) F F F F F F
on(b,e) F F F F F F
on(c,a) F F F F F F
on(c,b) T F F F
on(c,d) F F F T T T
on(c,e) F F F F F F
on(d,a) F F F F F F
on(d,b) F F F F F F
on(d,c) F F F F F F
on(d,e) F F T T T T
on(e,a) F F F F F F
on(e,b) F F F F F F
on(e,c) F F F F F F
on(e,d) T F F F F F

ontable(a) T T T F
ontable(b) F F F F
ontable(c) F F F F
ontable(d) T T F F F F
ontable(e) F T T T T T

0 1 2 3 4 5
F F F T T
F F T T F
T T T T F F
F T T F F F
T T F F F F
F F F F F T
F F F F F F
F F F F F F
F F F F F F
T T T F F
F F F F T T
F F F F F F
F F F F F F
F F F F F F
T T F F F
F F F T T T
F F F F F F
F F F F F F
F F F F F F
F F F F F F
F F T T T T
F F F F F F
F F F F F F
F F F F F F
T F F F F F
T T T T T F
F F F F F
F F F F F
T T F F F F
F T T T T T

0 1 2 3 4 5
F F F T T T
F F T T T F
T T T T F F
F T T F F F
T T F F F F
F F F F F T
F F F F F F
F F F F F F
F F F F F F
T T T F F F
F F F F T T
F F F F F F
F F F F F F
F F F F F F
T T F F F F
F F F T T T
F F F F F F
F F F F F F
F F F F F F
F F F F F F
F F T T T T
F F F F F F
F F F F F F
F F F F F F
T F F F F F
T T T T T F
F F F T F F
F F T F F F
T T F F F F
F T T T T T

1 State variable values inferred
from initial values and goals.

2 Branch: ¬clear(b)1.
3 Branch: clear(a)3.
4 Plan found:

0 1 2 3 4
fromtable(a,b)FFFFT
fromtable(b,c)FFFTF
fromtable(c,d)FFTFF
fromtable(d,e)FTFFF

totable(b,a)FFTFF
totable(c,b)FTFFF
totable(e,d)TFFFF
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Solving the SAT Problem
Example

0 1 2 3 4 5
clear(a) F F
clear(b) F F
clear(c) T T F F
clear(d) F T T F F F
clear(e) T T F F F F
on(a,b) F F F T
on(a,c) F F F F F F
on(a,d) F F F F F F
on(a,e) F F F F F F
on(b,a) T T F F
on(b,c) F F T T
on(b,d) F F F F F F
on(b,e) F F F F F F
on(c,a) F F F F F F
on(c,b) T F F F
on(c,d) F F F T T T
on(c,e) F F F F F F
on(d,a) F F F F F F
on(d,b) F F F F F F
on(d,c) F F F F F F
on(d,e) F F T T T T
on(e,a) F F F F F F
on(e,b) F F F F F F
on(e,c) F F F F F F
on(e,d) T F F F F F

ontable(a) T T T F
ontable(b) F F F F
ontable(c) F F F F
ontable(d) T T F F F F
ontable(e) F T T T T T

0 1 2 3 4 5
F F F T T
F F T T F
T T T T F F
F T T F F F
T T F F F F
F F F F F T
F F F F F F
F F F F F F
F F F F F F
T T T F F
F F F F T T
F F F F F F
F F F F F F
F F F F F F
T T F F F
F F F T T T
F F F F F F
F F F F F F
F F F F F F
F F F F F F
F F T T T T
F F F F F F
F F F F F F
F F F F F F
T F F F F F
T T T T T F
F F F F F
F F F F F
T T F F F F
F T T T T T

0 1 2 3 4 5
F F F T T T
F F T T T F
T T T T F F
F T T F F F
T T F F F F
F F F F F T
F F F F F F
F F F F F F
F F F F F F
T T T F F F
F F F F T T
F F F F F F
F F F F F F
F F F F F F
T T F F F F
F F F T T T
F F F F F F
F F F F F F
F F F F F F
F F F F F F
F F T T T T
F F F F F F
F F F F F F
F F F F F F
T F F F F F
T T T T T F
F F F T F F
F F T F F F
T T F F F F
F T T T T T

1 State variable values inferred
from initial values and goals.

2 Branch: ¬clear(b)1.
3 Branch: clear(a)3.
4 Plan found:

0 1 2 3 4
fromtable(a,b)FFFFT
fromtable(b,c)FFFTF
fromtable(c,d)FFTFF
fromtable(d,e)FTFFF

totable(b,a)FFTFF
totable(c,b)FTFFF
totable(e,d)TFFFF
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Performance of SAT-Based Planners
Planning Competition Problems 1998-2008
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Performance of SAT-Based Planners
Planning Competition Problems 1998-2008
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Performance of SAT-Based Planners
Planning Competition Problems 1998-2011 (revised)
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Extensions

MathSAT [BBC+05] and other SAT modulo Theories (SMT)
solvers extend SAT with numerical variables and equalities and
inequalities.
Applications include:

timed systems [ACKS02], temporal planning
hybrid systems [GPB05, ABCS05], temporal planning +
continuous change
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Symbolic Search Methods
Motivation

logical formulas as a data structure for sets, relations
Planning (model-checking, diagnosis, ...) algorithms in terms
of set & relational operations.
Algorithms that can handle very large state sets efficiently,
bypassing inherent limitations of explicit state-space search.
Complementary to explicit (enumerative) representations of
state sets: strengths in different types of problems.
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Transition relations in propositional logic

State variables are
X = {a, b, c}.

(¬a ∧ b ∧ c ∧ ¬a′ ∧ b′ ∧ ¬c′)∨
(¬a ∧ b ∧ ¬c ∧ a′ ∧ b′ ∧ ¬c′)∨
(¬a ∧ ¬b ∧ c ∧ a′ ∧ b′ ∧ c′)∨
(a ∧ b ∧ c ∧ a′ ∧ b′ ∧ ¬c′)

The corresponding matrix is
000 001 010 011 100 101 110 111

000 0 0 0 0 0 0 0 0
001 0 0 0 0 0 0 0 1
010 0 0 0 0 0 0 1 0
011 0 0 1 0 0 0 0 0
100 0 0 0 0 0 0 0 0
101 0 0 0 0 0 0 0 0
110 0 0 0 0 0 0 0 0
111 0 0 0 0 0 0 1 0

000

001
010

011

100

101
110

111
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Operations

The image of a set T of states w.r.t. action a is

imga(T ) = {s′ ∈ S|s ∈ T, sas′}.

The pre-image of a set T of states w.r.t. action a is

preimga(T ) = {s ∈ S|s′ ∈ T, sas′}.

These operations reduce to the relational join and projection
operations with a logic-representation of sets (unary relations)
and binary relations.
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Finding Plans with a Symbolic Algorithm

Computation of all reachable states

S0 = {I}
Si+1 = Si ∪

⋃
x∈X imgx(Si)

If Si = Si+1, then Sj = Si for all j ≥ i, and the computation can be terminated.

Si, i ≥ 0 is the set of states with distance ≤ i from the initial
state.
Si\Si−1, i ≥ 1 is the set of states with distance i.
If G ∩ Si for some i ≥ 0, then there is a plan.

Action sequence recovered from sets Si by a sequence of
backward-chaining steps.
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Use in Connection with Heuristic Search
Algorithms

Symbolic (BDD) versions of heuristic algorithms in the
state-space search context:

SetA∗ [JVB08]
BDDA∗ [ER98]
ADDA∗ [HZF02]
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Use in Connection with More General Problems

BDDs and other normal forms standard representation in
planning with partial observability [BCRT01, Rin05]. Also,
probabilistic planning [HSAHB99] with value functions
represented as Algebraic Decision Diagrams (ADD)
[FMY97, BFG+97].
A belief state is a set of possible current states.
These sets are often very large, best represented as
formulas.
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Significance of Symbolic Representations

Much more powerful framework than SAT or explicit
state-space search.
Unlike other methods, allows exhaustive generation of
reachable states.
Problem 1: e.g. with BDDs, size of transition relation may
explode.
Problem 2: e.g. with BDDs, size of sets Si may explode.
Important research topic: symbolic search with less
restrictive normal forms than BDD.
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Images as Relational Operations

s0
s2

./

s0 s1
s0 s2
s1 s0
s1 s2
s2 s0

=
s0 s1
s0 s2
s2 s0
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Images as Relational Operations

s0
s2

./

s0 s1
s0 s2
s1 s0
s1 s2
s2 s0

=
s0 s1
s0 s2
s2 s0

s000
s210

./

s0s100 01
s0s200 10
s1s001 00
s1s201 10
s2s010 00

=
s0s100 01
s0s200 10
s2s010 00
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Images as Relational Operations

s000
s210

./

s0s100 01
s0s200 10
s1s001 00
s1s201 10
s2s010 00

=
s0s100 01
s0s200 10
s2s010 00

x0x1
00 1
01 0
10 1
11 0

./

x0x1x
′
0x
′
1

0000 0
0001 1
0010 1
0011 0
0100 1
0101 0
0110 1
0111 0
1000 1
1001 0
1010 0
1011 0
1100 0
1101 0
1110 0
1111 0

=

x0x1x
′
0x
′
1

0001 1
0010 1
1000 1
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Representation of Sets as Formulas

state sets formulas over X
those 2|X|

2 states where x is true x ∈ X
E (complement) ¬E
E ∪ F E ∨ F
E ∩ F E ∧ F
E\F (set difference) E ∧ ¬F

the empty set ∅ ⊥ (constant false)
the universal set > (constant true)

question about sets question about formulas
E ⊆ F? E |= F?
E ⊂ F? E |= F and F 6|= E?
E = F? E |= F and F |= E?
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Sets (of states) as formulas

Formulas over X represent sets

a ∨ b over X = {a, b, c}

represents the set {
a
0
b
1
c
0, 011, 100, 101, 110, 111}.

Formulas over X ∪X ′ represent binary relations

a ∧ a′ ∧ (b↔ b′) over X ∪X ′ where X = {a, b}, X ′ = {a′, b′}

represents the binary relation {(
a
1
b
0,

a′

1
b′

0), (11, 11)}.

Valuations
a
1
b
0
a′

1
b′

0 and 1111 of X ∪X ′ can be viewed respectively

as pairs of valuations (
a
1
b
0,

a′

1
b′

0) and (11, 11) of X.
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Relation Operations

relation operation logical operation
projection abstraction
join conjunction
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Normal Forms

normal form reference comment
NNF Negation Normal Form
DNF Disjunctive Normal Form
CNF Conjunctive Normal Form
BDD Binary Decision Diagram [Bry92] most popular
DNNF Decomposable NNF [Dar01] more compact

Darwiche’s terminology: knowledge compilation languages [DM02]

Trade-off
more compact 7→ less efficient operations
But, “more efficient” is in the size of a correspondingly
inflated formula. (Also more efficient in terms of wall clock?)
BDD-SAT is O(1), but e.g. translation into BDDs is (usually)
far less efficient than testing SAT directly.
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Complexity of Operations

Operations offered e.g. by BDD packages:

∨ ∧ ¬ φ ∈TAUT? φ ∈SAT? φ ≡ φ′?
NNF poly poly poly co-NP-hard NP-hard co-NP-hard
DNF poly exp exp co-NP-hard in P co-NP-hard
CNF exp poly exp in P NP-hard co-NP-hard
BDD exp exp poly in P in P in P

Remark

For BDDs one ∨/∧ is polynomial time/size (size is doubled) but repeated
∨/∧ lead to exponential size.
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Existential and Universal Abstraction

Definition
Existential abstraction of a formula φ with respect to x ∈ X:

∃x.φ = φ[>/x] ∨ φ[⊥/x].

Universal abstraction is defined analogously by using conjunction
instead of disjunction.

Definition
Universal abstraction of a formula φ with respect to x ∈ X:

∀x.φ = φ[>/x] ∧ φ[⊥/x].
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∃-Abstraction

Example

∃b.((a→b) ∧ (b→c))
= ((a→>) ∧ (>→c)) ∨ ((a→⊥) ∧ (⊥→c))
≡ c ∨ ¬a
≡ a→c

∃ab.(a ∨ b) = ∃b.(> ∨ b) ∨ (⊥ ∨ b)
= ((> ∨>) ∨ (⊥ ∨>)) ∨ ((> ∨⊥) ∨ (⊥ ∨⊥))
≡ (> ∨>) ∨ (> ∨⊥) ≡ >
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∀ and ∃-Abstraction in Terms of Truth-Tables

∀c and ∃c correspond to combining lines with the same valuation
for variables other than c.

Example

∃c.(a ∨ (b ∧ c)) ≡ a ∨ b ∀c.(a ∨ (b ∧ c)) ≡ a

a b c a ∨ (b ∧ c)

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

a b ∃c.(a ∨ (b ∧ c))

0 0 0

0 1 1

1 0 1

1 1 1

a b ∀c.(a ∨ (b ∧ c))

0 0 0

0 1 0

1 0 1

1 1 1



Introduction

State-Space
Search

SAT

Symbolic search
Algorithms

Operations

Normal Forms

∃/∀-Abstraction

Images

Planners

Evaluation

References

Encoding of Actions as Formulas

Let X be the set of all state variables. An action a corresponds to
the conjunction of the precondition Pj and

x′ ↔ Fi(X)

for all x ∈ X. Denote this by τX(a).

Example (move-from-A-to-B)

atA ∧ (atA′ ↔ ⊥) ∧ (atB′ ↔ >) ∧ (atC ′ ↔ atC) ∧ (atD′ ↔ atD)

This is exactly the same as in the SAT case, except that we have
x and x′ instead of x@t and x@(t+ 1).
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Computation of Successor States

Let
X = {x1, . . . , xn},
X ′ = {x′1, . . . , x′n},
φ be a formula over X that represents a set T of states.

Image Operation

The image {s′ ∈ S|s ∈ T, sas′} of T with respect to a is

imga(φ) = (∃X.(φ ∧ τX(a)))[X/X ′].

The renaming is necessary to obtain a formula over X.
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Computation of Predecessor States

Let
X = {x1, . . . , xn},
X ′ = {x′1, . . . , x′n},
φ be a formula over X that represents a set T of states.

Preimage Operation

The pre-image {s ∈ S|s′ ∈ T, sas′} of T with respect to a is

preimga(φ) = (∃X ′.(φ[X ′/X] ∧ τX(a))).

The renaming of φ is necessary so that we can start with a
formula over X.
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Engineering Efficient Planners

Gap between Theory and Practice large: engineering details
of implementation critical for performance in current planners.
Few of the most efficient planners use textbook methods.
Explanations for the observed differences between planners
lacking: this is more art than science.
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Algorithm Portfolios

Algorithm portfolio = combination of two or more algorithms
Useful if there is no single “strongest” algorithm.

algorithm 1

algorithm 2

algorithm 3
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Algorithm Portfolios
Composition methods

Composition methods:
selection = choose one, for the instance in question
parallel composition = run components in parallel
sequential composition = run consecutively, according to a
schedule

Examples: BLACKBOX [KS99], FF [HN01], LPG [GS02] (all use
sequential composition)
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Algorithm Portfolios
An Illustration of Portfolios
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Evaluation of Planners

Evaluation of planning systems is based on

Hand-crafted problems (from the planning competitions)
This is the most popular option.

+ Problems with (at least moderately) different structure.
- Real-world relevance mostly low.
- Instance generation uncontrolled: not known if easy or difficult.
- Many have a similar structure: objects moving in a network.

Benchmark sets obtained by translation from other problems
graph-theoretic problems: cliques, colorability, ... [PMB11]

Instances sampled from all instances [Byl96].
+ Easy to control problem hardness.
- No direct real-world relevance (but: core of any “hard” problem)
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Sampling from the Set of All Instances
[Byl96, Rin04c]

Generation:
1 Fix number N of state variables, number M of actions.
2 For each action, choose preconditions and effects randomly.

Has a phase transition from unsolvable to solvable, similarly
to SAT [MSL92] and connectivity of random graphs [Bol85].
Exhibits an easy-hard-easy pattern, for a fixed N and an
increasing M , analogously to SAT [MSL92].
Hard instances roughly at the 50 per cent solvability point.
Hardest instances are very hard: 20 state variables too
difficult for many planners, as their heuristics don’t help.
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Sampling from the Set of All Instances
Experiments with planners
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Sampling from the Set of All Instances
Experiments with planners
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Sampling from the Set of All Instances
Experiments with planners
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